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System identification with linear regression

Can we find the length of a pendulum given measured data from it?
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System identification with linear regression

The relationship between x1 and x3 is nonlinear
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System identification with linear regression

but what if we simply transform it so that a linear relationship holds?
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System identification with linear regression

Applying linear regression to it, we can recover the length and

damping coefficient!
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Linear parameter models

Linear regression can be used to solve complex nonlinear problems,

by transforming the data so that it is linear in some domain

• These are called linear parameter / linear-in-the-parameter

models

• In principle, we could use complex transforms of our input

data to suit the problem at hand. For example:

X = [1, x0, x1, x0x1, x
2
0, x

2
1, ..., sin(x), cos(x), sign(x), ...]

• we’re only limited by our imaginations

• but life is not that simple...
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Polynomial expansions

Lets look at another example...
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Polynomial expansions

Looks linear, so lets fit a linear model y = [1, x]w
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Polynomial expansions

great! but how good are these predictions elsewhere? lets get

some more data...
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Polynomial expansions

oh no! ...but hold on, we can fit a quadratic polynomial to

this,
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Polynomial expansions
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Polynomial expansions

And how good is this at predicting outside the training region?
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Polynomial expansions

And how good is this at predicting outside the training region?
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Polynomial expansions

Ok... we can fit a 3rd order polynomial...
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Polynomial expansions

Ok... we can fit a 3rd order polynomial...
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Polynomial expansions

and a fourth order...
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Polynomial expansions

A few question arise:

• Should we keep increasing the complexity of the models to

minimise the training error?

• At what point do we stop?

• How do we assess model performance outside of the region

covered by training data ?
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Model Complexity

By now, we will have noticed that

• Simple models don’t perform that well on complex data

• Complex models perform well on the data that they’ve been

trained on, but fail to accurately predict outside that range.

They over-fit
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Bias, Variance and overfitting

p = 1 p = 4

p = 8 p = 10
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Bias and variance
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Bias and variance

• Simple models underfit / have high bias / high training error

• Complex models overfit / have high variance / high

generalisation error

• A balance is needed!
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Bias and variance

We have two main tools to balance model complexity and quality

of fit:

• Regularisation

• Cross-validation
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Regularisation

One way to achieve a balance of complexity and quality of fit is to

penalise more complex models through additional terms in the loss

function.

In linear regression, a popular penalty is:

J(w) = ||y − Xw||22 + λ||w||p (1)

Note that this penalty can also be interpreted as a constraint on

the loss function
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Regularisation

J(w) = ||y − Xw||22 + λ||w||p (2)

The norm, p, in the loss function plays an important role on the

type of regularisation.

• p = 0 leads to a combinatorial selection of one candidate

model amongst all, and is generally hard to optimise.

• p = 1 leads to a sparse solution over the weight vector, w.

This is known as Lasso regression. There is no closed-form

solution, but practical optimisation algorithms exist for this

• p = 2 leads to circular constraint over the loss function, and a

closed form solution exists for this penalty!

• We’ll focus on p = 2 here, otherwise known as Tikhonov

reugarisation
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Regularisation constraints of Lasso and Ridge regression

Lasso: p = 1 Ridge: p = 2
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Regularisation and ill-posedness

• Regularisation not only helps balance model complexity,

• it also helps to better condition ill-posed inverse problems

• OLS solution involves the inversion: (XTX)−1

• the solution to it, factorisation might be numerically unstable
if:

• there are significantly more bases than observations

• the bases/columns in X are not linearly independent (solution

is not unique)
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Tikhonov regularisation

• We have derived the solution to the basic least squares linear

regression

• Tikhonov regularisation follows closely from it

• Our loss function has an additional term, ||w||22
• and we have that ∇||w||22 = 2w
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Deriving Tikhonov regularisation

We need to minimise:

J(w) =
1

2
(y − Xw)T (y − Xw) + λ||w||22

We have that,

∇w||y − Xw||22 = 2XTXw − 2XTy

and also,

∇w||w||22 = 2λw

so,

XTy = XTXw + λw

rearranging for w

w = (XTX + λI)−1XTy
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Regularisation - Example

OLS: M = 10, λ = 0 Ridge: M = 10, λ = 1× 10−3
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Regularisation

Life is good, but have we replaced one problem with another?

• The regularisation coefficient, λ now balances model

complexity

• We need an effective method for selecting it, based on

generalisation performance
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Generalisation error

• In order to assess generalsation error, we must set aside a

sample of our training data for evaluation

• However, training data can be scarce! Holding out data means

it does not inform training... so maybe not a good idea?
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Conclusions

What have we learned today?

• How to do nonlinear regression, using linear regression

• Generalisation

• The bias-variance trade-off - balancing model complexity

• Regularisation
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So... what next?

Tomorrow, we’ll learn about some even more flexible models for

regression, and how to tune hyper-parameters through

cross-validation ;)
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