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Ordinary Linear Regression

Expansions into polynomial and other bases

Bias and variance in models

Regularisation as a method of balancing model complexity



e We are generally looking to solve y = Xw
e OLS: w=(X"TX)"1XTy
e Ridge Regression: w = (XTX + A)~1XTy



Feature spaces

e Linear regression model nonlinear problems through the use of
an expansion:
y = dw

e For instance, a quadratic expansion would be defined as,
2
P = [].,Xl, X2, X3, ..., Xg, X7, X1X2, X1X3, ..., X1X{,

2 2
X2X1, X5, X2X3, ..., X2X4, X3X1, X3X2, X3, ...,

2
X3Xd, - - -y XdX1, XgX2, XgX3, ..., Xg]



e The solution with such an expansion can be simply formulated
as,
w=(o"Td)loTy,



e The solution with such an expansion can be simply formulated
as,
w=(o"Td)loTy,
where ® is a matrix with dP columns and n rows:
d(x1)
b = :
P(xn)



e expansions, such as the polynomials can be very expressive -
we can model complex problems with them

e but lets think for a moment about how many columns there
are in a degree p polynomial...

o ~ dP |

e imagine you had a data set with 10 variables (d) and required
fitting a polynomial with p =5, how many features is that ?



The term @7 ® vyields a dP x dP matrix, which we need to
invert

Usually we need roughly as many training samples as we have
dimensions (!)

Defining the expansions explicitly is
e computationally intractable
e and leads to numerically unstable matrix inversions

Where on earth are we going to collect dP training samples?
... that's a lot of time in the lab!



but there is hope...




e If only there was a way to learn and make predictions using
large number of features without actually having to compute
them?

e It turns out, there is!

e Using kernels



Dual form ridge regression

e There are two forms of linear regression: primal and dual

e So far we've learned about the primal, so lets have a look at
this other equivalent version



The dual form

Let's use the feature map ® with d dimensions so that:
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The dual form

Let's use the feature map ® with d dimensions so that:
y =®w where w=A"10Ty, A=dTd + \gp.

For a large number of features d”, and limited samples n, we can
avoid inverting the dP x dP matrix A by using some linear algebra!

AT =T (ddT +AlI,) = dT(ddT +AI,) T =AtoT
Which means that
w=A"ltoTy (primal form)
w=0o"(dd” +Al,)" ' =d"Kly, (dual form)
where K = &7 + )l,,.
Amazing! K is a n x n matrix, and A is a d”? x dP matrix.

We can choose to calculate K—1 or A~1L. 10



A digression on notation...

At the this point, it is important to introduce notation to
distinguish between training and prediction samples:

Training samples: x,y

Prediction points: x*,y*
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Dual Ridge Regression, predictive equations

In dual form we have that,
w=0adTKly
so the predictive model is,

y* _ ¢*¢TK—1y

where,
K= (®®7 + \,)
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Dual form ridge regression

e Why have we gone through all this trouble?
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Dual form ridge regression

e Why have we gone through all this trouble?

e Both primal and dual achieve the same end: predict y* given
X and x*
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e In primal, we invert a dP x dP matrix
e In dual, we invert an n X n matrix
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Dual form ridge regression

e Why have we gone through all this trouble?

e Both primal and dual achieve the same end: predict y* given
X and x*

e However, note:

In primal, we invert a d” x dP matrix

In dual, we invert an n x n matrix
So which is better?
Dual is better when d” > n, and this is the case in large

feature expansions

e If you had a 100000-dimensional space from a 5%-order
polynomial, but only 10 samples, you could solve for it by only
using those 10 samples, and inverting a 10 x 10 matrix !!!
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Dual form regression
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Dual form regression

e So, we have gone from:

e having to compute a dP-dimensional feature space and solving
a severely under-determined d? x dP system

e solving such system by only inverting a 10 x 10 matrix,
provided we can compute od’

e that is great!

e but what if we didn’t even have to compute ®d7?
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The kernel trick

e Have you noticed how both the dual and primal (our first
approach) depend on inner products? For example, YO
& and dd ) ?

e |t turns out there are easier ways to evaluate these inner

products in our feature space.

e To evaluate these inner products we use a kernel function

k(x,x)

A linear kernel function gives us:

Alox) = xx =3 Dy
J

16
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The kernel trick

Using the dual to predict y* from x* and X we need to calculate

Y =o(x)w = g(x" )@ Kty =
B(x) - B(x1) ... G(x*) d(xn)| Ky,

where K = ®®7 + \l, whose components are

d(xn)
K — d(xn)

d(x1) - o(x1) é(xa)-o(x2) ... o(x1)-
-~ p(x1
_ L,

x1
o(x2) - o(x1) d(x2)-d(x2) ... d(x)-

P(xn) - (1) ¢(x2) - ¢(xa) .o D(xn) - ()
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The kernel trick

Using the dual to predict y* from x* and X we need to calculate
y* _ (b(X*)W _ ¢(X*)¢TK_1y —
O(x) - plxa) ... B(x") - B(xn)| KTy,
where K = ®®7 + \l, whose components are

o(x) - o(xa) d(x) o) ... é(x)-
K — - P(x1

x1
o(x2) - o(x1) d(x2)-d(x2) ... d(x)-

D) - 6(x) D0) - 0(xa) . D) - 0(x0)

So we need only calculate x(x,x") = ¢(x) - ¢(x’) many times!
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The kernel trick

e Now let’s use a polynomial kernel

k(x,x') = (x-x' + 1)P
= ¢(x) - ¢(x')
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The kernel trick

e Now let’s use a polynomial kernel

k(x,x') = (x-x' + 1)P

= 6(x) - 6(x)
then, k(x,x") would contain every monomial in x of degree
0,...p.
Which is easier to calculate: (x-x’ 4 1)P or both ¢(x) and
¢(x)?
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The kernel trick: example

e We have now defined the regression problem in terms of a
kernel function
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The kernel trick: example

e We have now defined the regression problem in terms of a
kernel function

e To compute the kernel matrix, with the polynomial kernel, we
don’t need to evaluate ® at all!

e Instead, we evaluate the function (x - x' 4+ 1)P for every pair of
training samples x and x’

e We can now do polynomial regression with an exponentially
long, high-order polynomial in less time than it would take

even to compute @

e This is MIND BLOWING!
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Kernel Ridge regression example

5_ A
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=101 —— degree 3
degree 4
degree 5
—154 @ training points
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Kernel trick

Lets recap on what we've done so far

e We started by defining linear regression in terms of long
feature expansions ®
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Kernel trick

Lets recap on what we've done so far

e We started by defining linear regression in terms of long
feature expansions ®

e We converted the linear regression problem into dual form

e This gave us a solution in terms of the explicit inner product
b7

e We've then replaced the explicit evaluation of the inner
product an implicit evaluation in the feature space defined

by the kernel function k(x,x’)

e Which means we can do nonlinear regression in any feature
space defined by x, without having to actually compute it!

e This is known as the kernel trick

21



The Gaussian Kernel

e The polynomial kernel allows us to do fast computation in
spaces of exponentially increasing dimensions.
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The Gaussian Kernel

The polynomial kernel allows us to do fast computation in
spaces of exponentially increasing dimensions.

e Here's something even more awesome...

e We can go all the way and compute features of infinitely
large dimensional spaces...

Enter the Gaussian kernel function,

_x —X22)

r(x1,%2) = exp ( 552
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The Gaussian kernel

Cxa— X2|2>

k(x1,X2) = exp ( 502

23



The Gaussian kernel

Cxa— X2|2>
202
This innocent-looking expression actually comes from this feature

k(x1,X2) = exp (

vector (for one dimension only),

23



The Gaussian kernel

Cxa— X2|2>
202
This innocent-looking expression actually comes from this feature

k(x1,X2) = exp (

vector (for one dimension only),

2 3
X1 Xi X7 } T

d(x1) = exp ( — ﬁ) [1, VTR, TR

X2

23



The Gaussian kernel

Cxa— X2|2>
202
This innocent-looking expression actually comes from this feature

k(x1,X2) = exp (

vector (for one dimension only),

2 3
X1 Xi X7 } T

d(x1) = exp ( — ﬁ) [1, VTR, TR

which is an infinite vector but still ¢(x1) - ¢(x2) converges to

m(xl, X2)

X2

23






The Gaussian kernel

Y2
k(x,x") :exp(— |x2)2(,|)
o

e This is really powerful, as it gives us a numerically tractable
way of using an infinite-dimensional feature space.
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The Gaussian kernel

Y2
k(x,x") :exp(— |x2)2(,|)
o

e This is really powerful, as it gives us a numerically tractable
way of using an infinite-dimensional feature space.

e At this point, it helps to think of kernels simply as measures

of similarity and closeness between pairs of samples.

e (actually a large chunk of kernel methods were developed to
deal with spatial statistical modelling of forest density... )
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Kernel Ridge Regression example - Gaussian kernel

e = Training
Kernel Ridge Prediction

0.15 \ = True Function

0.10

0.05

0.00 1

—0.05 4

26



Some intuition on kernels

We can predict complex functions on large dimension using,

v =K (K+ )y, and k(x,x) = exp —M
) ) 20_2 *
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Some intuition on kernels
We can predict complex functions on large dimension using,

v =K (K+ )y, and k(x,x) = exp —M

) ) 20_2 *
But why does it work? Take one training point [xi, y1] = [6, 10],
then K = [k(x1,x1)] = [1] and y = [y1] (training data),
K* = [rk(x*,x1)] and y* =~ k(x*, x1)y1 = y1e~ 252

(x* 7)(1)2
10.0 AN
// \\‘
7.5 /) \
/ ‘\
o Training data (x1, y1) \
>0 - Predict y* \
7 \
2.5 / N\
0.0bg==z=mommom” -
0 2 4 6
*
X
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y =K K+ )y, and k(x,x) =exp —M .
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What about adding more training data? With three data points:
y = [y1,y2,y3] T, (K+ A"ty = [a1, a0, a3] " (only training data),
K* = [k(x*, x1), k(x*, x2), k(x*, x3)], then

y* = K*[a1, a2, 23] T = a1k(x*, x1) + axk(x*, x2) + azk(x*, x3):

10 a~

e Training data / ™
\
8t|---- Predicty” / A,
\
\

/

/
/
6 /
/
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Some intuition on kernels

y =K K+ )y, and k(x,x) =exp <—

[x — x||?
202 '

What about adding more training data? With three data points:
y = 1,y2,y3]7, (K+ A7ty = [a1, a2, a3] T (only training data),

K* = [k(x*, x1), k(x*, x2), k(x*, x3)], then

Training data
- Predict y”*

yik(x", x1)
¥aK(X", X2)

y3K(x", x3)

* = K*[a1, a2, a3] T = a1k(x*, x1) + ak(x*, x2) + azk(x*, x3):

yr =
10 Paaty
e Training data / N
8t|---- Predicty” //
/
6 s
4
2 et /
0 2 4 6
*
X

28



Some intuition on kernels

y =K K+ )y, and k(x,x) =exp —M .
) ) 20_2

What about adding more training data? With three data points:
y = [v1, 2, 3], (K+ A1)ty = [a1, a2, a3] " (only training data),
K* = [k(x*, x1), k(x*, x2), k(x*, x3)], then

*

y* = K*[a1, a2, 83]T = a1k(x*, x1) + a2k(x*, x2) + azk(x*, x3):

10 oS 10
e Training data / N Training data

gl|---- Predicty” / A, 8 - Predicty”
! \ yik(x ", x1)

6 / \ 6 *
Y, \ y2K(X ", x2)

4 // \_\ 4 y3K(x", x3)

2 el / N2

0 2 4 N 6 8 10.0
X

If add > _; yjr(x*, x;) we don't get y*. The a; # y; to compensate
for the overlapping kernel functions x(x*, x;). 28



What have we learned today?

e learned about the dual form of linear regression
e introduced the kernel trick
e Shown that you can learn and predict fairly complex functions

on large dimensions using,
y' = K (K+ Aty

where
K = r(x,x")

(all pairs of training points), and
K* = k(x*, x)

(pairs of training and prediction points)

e This is called Kernel Ridge Regression
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