Kernel Machines

 ${\sf Ramon \ Fuentes}^{1,2}, \ {\sf Artur \ Gower}^3$

August 8, 2019

¹Visiting Researcher, Dynamics Research Group The University of Sheffield

²Research Scientist, Callsign Ltd

³Lecturer in Dynamics The University of Sheffield

Recap

- Ordinary Linear Regression
- Expansions into polynomial and other bases
- Bias and variance in models
- Regularisation as a method of balancing model complexity

Recap

- \bullet We are generally looking to solve $\mathbf{y} = \mathbf{X}\mathbf{w}$
- OLS: $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
- ullet Ridge Regression: $\mathbf{w} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$

Feature spaces

 Linear regression model nonlinear problems through the use of an expansion:

$$\mathbf{y} = \mathbf{\Phi} \mathbf{w}$$

• For instance, a quadratic expansion would be defined as,

$$\begin{split} \boldsymbol{\Phi} &= [1, \mathbf{x}_1, \, \mathbf{x}_2, \, \mathbf{x}_3, \, ..., \, \mathbf{x}_d, \mathbf{x}_1^2, \mathbf{x}_1\mathbf{x}_2, \mathbf{x}_1\mathbf{x}_3, ..., \mathbf{x}_1\mathbf{x}_d, \\ & \quad \mathbf{x}_2\mathbf{x}_1, \mathbf{x}_2^2, \mathbf{x}_2\mathbf{x}_3, ..., \mathbf{x}_2\mathbf{x}_d, \mathbf{x}_3\mathbf{x}_1, \mathbf{x}_3\mathbf{x}_2, \mathbf{x}_3^2, ..., \\ & \quad \mathbf{x}_3\mathbf{x}_d, \dots, \mathbf{x}_d\mathbf{x}_1, \mathbf{x}_d\mathbf{x}_2, \mathbf{x}_d\mathbf{x}_3, ..., \mathbf{x}_d^2] \end{split}$$

 The solution with such an expansion can be simply formulated as,

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y},$$

 The solution with such an expansion can be simply formulated as,

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y},$$

where Φ is a matrix with d^p columns and n rows:

$$\mathbf{\Phi} = egin{bmatrix} \phi(\mathbf{x}_1) \ dots \ \phi(\mathbf{x}_n) \end{bmatrix}.$$

4

- expansions, such as the polynomials can be very expressive we can model complex problems with them
- but lets think for a moment about how many columns there are in a degree p polynomial...
- $\sim d^p$!
- imagine you had a data set with 10 variables (d) and required fitting a polynomial with p=5, how many features is that ?

- The term $\mathbf{\Phi}^T \mathbf{\Phi}$ yields a $d^p \times d^p$ matrix, which we need to invert
- Usually we need roughly as many training samples as we have dimensions (!)
- Defining the expansions explicitly is
 - computationally intractable
 - and leads to numerically unstable matrix inversions
- Where on earth are we going to collect d^p training samples?
 ... that's a lot of time in the lab!

but there is hope...

what if...

- If only there was a way to learn and make predictions using large number of features without actually having to compute them?
- It turns out, there is!
- Using kernels

- There are two forms of linear regression: primal and dual
- So far we've learned about the primal, so lets have a look at this other equivalent version

Let's use the feature map Φ with d dimensions so that:

Let's use the feature map Φ with d dimensions so that:

$$y = \Phi \mathbf{w}$$
 where $\mathbf{w} = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$, $\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}_{d^p}$.

Let's use the feature map Φ with d dimensions so that:

$$y = \Phi \mathbf{w}$$
 where $\mathbf{w} = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$, $\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}_{d^p}$.

For a large number of features d^p , and limited samples n, we can avoid inverting the $d^p \times d^p$ matrix **A** by using some linear algebra!

Let's use the feature map Φ with d dimensions so that:

$$y = \Phi \mathbf{w}$$
 where $\mathbf{w} = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$, $\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}_{d^p}$.

For a large number of features d^p , and limited samples n, we can avoid inverting the $d^p \times d^p$ matrix **A** by using some linear algebra!

$$\mathbf{A}\mathbf{\Phi}^T = \mathbf{\Phi}^T (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_n) \implies \mathbf{\Phi}^T (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_n)^{-1} = \mathbf{A}^{-1}\mathbf{\Phi}^T$$

Let's use the feature map Φ with d dimensions so that:

$$y = \Phi \mathbf{w}$$
 where $\mathbf{w} = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$, $\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}_{d^p}$.

For a large number of features d^p , and limited samples n, we can avoid inverting the $d^p \times d^p$ matrix **A** by using some linear algebra!

$$\mathbf{A}\mathbf{\Phi}^T = \mathbf{\Phi}^T (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_n) \implies \mathbf{\Phi}^T (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_n)^{-1} = \mathbf{A}^{-1}\mathbf{\Phi}^T$$

Which means that

$$\begin{split} \mathbf{w} &= \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y} & \text{(primal form)} \\ \mathbf{w} &= \mathbf{\Phi}^T (\mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I}_n)^{-1} = \mathbf{\Phi}^T \mathbf{K}^{-1} \mathbf{y}, & \text{(dual form)} \end{split}$$

where $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I}_n$.

Let's use the feature map Φ with d dimensions so that:

$$y = \Phi \mathbf{w}$$
 where $\mathbf{w} = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$, $\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}_{d^p}$.

For a large number of features d^p , and limited samples n, we can avoid inverting the $d^p \times d^p$ matrix **A** by using some linear algebra!

$$\mathbf{A}\mathbf{\Phi}^T = \mathbf{\Phi}^T (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_n) \implies \mathbf{\Phi}^T (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_n)^{-1} = \mathbf{A}^{-1}\mathbf{\Phi}^T$$

Which means that

$$\mathbf{w} = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$$
 (primal form)
$$\mathbf{w} = \mathbf{\Phi}^T (\mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I}_n)^{-1} = \mathbf{\Phi}^T \mathbf{K}^{-1} \mathbf{y},$$
 (dual form)

where $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I}_n$.

Amazing! **K** is a $n \times n$ matrix, and **A** is a $d^p \times d^p$ matrix.

Let's use the feature map Φ with d dimensions so that:

$$y = \Phi \mathbf{w}$$
 where $\mathbf{w} = \mathbf{A}^{-1} \mathbf{\Phi}^T \mathbf{y}$, $\mathbf{A} = \mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}_{d^p}$.

For a large number of features d^p , and limited samples n, we can avoid inverting the $d^p \times d^p$ matrix **A** by using some linear algebra!

$$\mathbf{A}\mathbf{\Phi}^T = \mathbf{\Phi}^T (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_n) \implies \mathbf{\Phi}^T (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_n)^{-1} = \mathbf{A}^{-1}\mathbf{\Phi}^T$$

Which means that

$$\mathbf{w} = \mathbf{A}^{-1} \mathbf{\Phi}^{T} \mathbf{y}$$
 (primal form)
$$\mathbf{w} = \mathbf{\Phi}^{T} (\mathbf{\Phi} \mathbf{\Phi}^{T} + \lambda \mathbf{I}_{n})^{-1} = \mathbf{\Phi}^{T} \mathbf{K}^{-1} \mathbf{y},$$
 (dual form)

where $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I}_n$.

Amazing! **K** is a $n \times n$ matrix, and **A** is a $d^p \times d^p$ matrix.

We can choose to calculate K^{-1} or A^{-1} .

A digression on notation...

At the this point, it is important to introduce notation to distinguish between training and prediction samples:

Training samples: x, y

Prediction points: $\mathbf{x}^*, \mathbf{y}^*$

Dual Ridge Regression, predictive equations

In dual form we have that,

$$\mathbf{w} = \mathbf{\Phi}^T \mathbf{K}^{-1} \mathbf{y}$$

so the predictive model is,

$$\mathbf{y}^* = \mathbf{\Phi}^* \mathbf{\Phi}^T \mathbf{K}^{-1} \mathbf{y}$$

where,

$$\mathbf{K} = (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda I_n)$$

• Why have we gone through all this trouble?

- Why have we gone through all this trouble?
- Both primal and dual achieve the same end: predict y* given
 X and x*

- Why have we gone through all this trouble?
- Both primal and dual achieve the same end: predict y* given
 X and x*
- However, note:

- Why have we gone through all this trouble?
- Both primal and dual achieve the same end: predict y* given
 X and x*
- However, note:
 - In primal, we invert a $d^p \times d^p$ matrix

- Why have we gone through all this trouble?
- Both primal and dual achieve the same end: predict y* given
 X and x*
- However, note:
 - In primal, we invert a $d^p \times d^p$ matrix
 - In dual, we invert an $n \times n$ matrix

- Why have we gone through all this trouble?
- Both primal and dual achieve the same end: predict y* given
 X and x*
- However, note:
 - In primal, we invert a $d^p \times d^p$ matrix
 - In dual, we invert an $n \times n$ matrix
 - So which is better?

- Why have we gone through all this trouble?
- Both primal and dual achieve the same end: predict y* given
 X and x*
- However, note:
 - In primal, we invert a $d^p \times d^p$ matrix
 - In dual, we invert an $n \times n$ matrix
 - So which is better?
 - Dual is better when d^p ≫ n, and this is the case in large feature expansions

- Why have we gone through all this trouble?
- Both primal and dual achieve the same end: predict y* given
 X and x*
- However, note:
 - In primal, we invert a $d^p \times d^p$ matrix
 - In dual, we invert an $n \times n$ matrix
 - So which is better?
 - Dual is better when d^p ≫ n, and this is the case in large feature expansions
- If you had a 100000-dimensional space from a 5^{th} -order polynomial, but only 10 samples, you could solve for it by only using those 10 samples, and inverting a 10×10 matrix !!!

Dual form regression

- So, we have gone from:
 - having to compute a d^p -dimensional feature space and solving a severely under-determined $d^p \times d^p$ system

Dual form regression

- So, we have gone from:
 - having to compute a d^p -dimensional feature space and solving a severely under-determined $d^p \times d^p$ system
 - solving such system by only inverting a 10 \times 10 matrix, provided we can compute $\Phi\Phi^T$

Dual form regression

- So, we have gone from:
 - having to compute a d^p -dimensional feature space and solving a severely under-determined $d^p \times d^p$ system
 - solving such system by only inverting a 10×10 matrix, provided we can compute $\Phi\Phi^T$
- that is great!
- but what if we didn't even have to compute $\Phi\Phi^T$?

Have you noticed how both the dual and primal (our first approach) depend on inner products? For example, ΦΦ^T, Φ^TΦ and ΦΦ^{T*})?

- Have you noticed how both the dual and primal (our first approach) depend on inner products? For example, ΦΦ^T, Φ^TΦ and ΦΦ^{T*})?
- It turns out there are easier ways to evaluate these inner products in our feature space.

- Have you noticed how both the dual and primal (our first approach) depend on inner products? For example, ΦΦ^T, Φ^TΦ and ΦΦ^{T*})?
- It turns out there are easier ways to evaluate these inner products in our feature space.
- To evaluate these inner products we use a kernel function $\kappa(\mathbf{x},\mathbf{x}')$

- Have you noticed how both the dual and primal (our first approach) depend on inner products? For example, ΦΦ^T, Φ^TΦ and ΦΦ^{T*})?
- It turns out there are easier ways to evaluate these inner products in our feature space.
- To evaluate these inner products we use a kernel function κ(x, x')
- A linear kernel function gives us:

$$\kappa(\mathbf{x}, \mathbf{x}') = \mathbf{x} \cdot \mathbf{x}' = \sum_{j} x_{j} x_{j}'$$

Using the dual to predict y^* from \mathbf{x}^* and \mathbf{X} we need to calculate

Using the dual to predict y^* from \mathbf{x}^* and \mathbf{X} we need to calculate

$$y^* = \phi(\mathbf{x}^*)\mathbf{w} = \phi(\mathbf{x}^*)\mathbf{\Phi}^T\mathbf{K}^{-1}\mathbf{y} = \begin{bmatrix} \phi(\mathbf{x}^*) \cdot \phi(\mathbf{x}_1) & \dots & \phi(\mathbf{x}^*) \cdot \phi(\mathbf{x}_n) \end{bmatrix} \mathbf{K}^{-1}\mathbf{y},$$

Using the dual to predict y^* from \mathbf{x}^* and \mathbf{X} we need to calculate

$$y^* = \phi(\mathbf{x}^*)\mathbf{w} = \phi(\mathbf{x}^*)\mathbf{\Phi}^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y} = \begin{bmatrix} \phi(\mathbf{x}^*) \cdot \phi(\mathbf{x}_1) & \dots & \phi(\mathbf{x}^*) \cdot \phi(\mathbf{x}_n) \end{bmatrix} \mathbf{K}^{-1}\mathbf{y},$$

where $\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I}_n$ whose components are

$$\mathbf{K} = \begin{bmatrix} \phi(x_1) \cdot \phi(x_1) & \phi(x_1) \cdot \phi(x_2) & \dots & \phi(x_1) \cdot \phi(x_n) \\ \phi(x_2) \cdot \phi(x_1) & \phi(x_2) \cdot \phi(x_2) & \dots & \phi(x_2) \cdot \phi(x_n) \\ \vdots & & \vdots & & \vdots \\ \phi(x_n) \cdot \phi(x_1) & \phi(x_2) \cdot \phi(x_n) & \dots & \phi(x_n) \cdot \phi(x_n) \end{bmatrix} + \lambda \mathbf{I}_n$$

Using the dual to predict y^* from \mathbf{x}^* and \mathbf{X} we need to calculate

$$y^* = \phi(\mathbf{x}^*)\mathbf{w} = \phi(\mathbf{x}^*)\mathbf{\Phi}^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y} = \begin{bmatrix} \phi(\mathbf{x}^*) \cdot \phi(\mathbf{x}_1) & \dots & \phi(\mathbf{x}^*) \cdot \phi(\mathbf{x}_n) \end{bmatrix} \mathbf{K}^{-1}\mathbf{y},$$

where $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T + \lambda \mathbf{I}_n$ whose components are

$$\mathbf{K} = \begin{bmatrix} \phi(x_1) \cdot \phi(x_1) & \phi(x_1) \cdot \phi(x_2) & \dots & \phi(x_1) \cdot \phi(x_n) \\ \phi(x_2) \cdot \phi(x_1) & \phi(x_2) \cdot \phi(x_2) & \dots & \phi(x_2) \cdot \phi(x_n) \\ \vdots & & \vdots & & & \\ \phi(x_n) \cdot \phi(x_1) & \phi(x_2) \cdot \phi(x_n) & \dots & \phi(x_n) \cdot \phi(x_n) \end{bmatrix} + \lambda \mathbf{I}_n$$

So we need only calculate $\kappa(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$ many times!

• Now let's use a polynomial kernel

$$\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}' + 1)^{p}$$
$$= \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$

• Now let's use a polynomial kernel

$$\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}' + 1)^{p}$$
$$= \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$

then, $\kappa(\mathbf{x}, \mathbf{x}')$ would contain every monomial in \mathbf{x} of degree 0, ..., p.

• Now let's use a polynomial kernel

$$\kappa(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}' + 1)^{p}$$
$$= \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$

then, $\kappa(\mathbf{x}, \mathbf{x}')$ would contain every monomial in \mathbf{x} of degree 0, ..., p.

Which is easier to calculate: $(\mathbf{x} \cdot \mathbf{x}' + 1)^p$ or both $\phi(\mathbf{x})$ and $\phi(\mathbf{x}')$?

 We have now defined the regression problem in terms of a kernel function

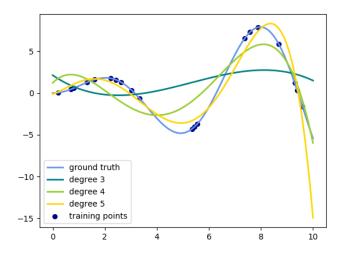
- We have now defined the regression problem in terms of a kernel function
- To compute the kernel matrix, with the polynomial kernel, we don't need to evaluate Φ at all!

- We have now defined the regression problem in terms of a kernel function
- To compute the kernel matrix, with the polynomial kernel, we don't need to evaluate Φ at all!
- Instead, we evaluate the function $(\mathbf{x} \cdot \mathbf{x}' + 1)^p$ for every pair of training samples \mathbf{x} and \mathbf{x}'

- We have now defined the regression problem in terms of a kernel function
- To compute the kernel matrix, with the polynomial kernel, we don't need to evaluate Φ at all!
- Instead, we evaluate the function $(\mathbf{x} \cdot \mathbf{x}' + 1)^p$ for every pair of training samples \mathbf{x} and \mathbf{x}'
- ullet We can now do polynomial regression with an exponentially long, high-order polynomial in less time than it would take even to compute ullet

- We have now defined the regression problem in terms of a kernel function
- To compute the kernel matrix, with the polynomial kernel, we don't need to evaluate Φ at all!
- Instead, we evaluate the function $(\mathbf{x} \cdot \mathbf{x}' + 1)^p$ for every pair of training samples \mathbf{x} and \mathbf{x}'
- ullet We can now do polynomial regression with an exponentially long, high-order polynomial in less time than it would take even to compute ullet
- This is MIND BLOWING!

Kernel Ridge regression example



Lets recap on what we've done so far

 \bullet We started by defining linear regression in terms of long feature expansions Φ

- \bullet We started by defining linear regression in terms of long feature expansions Φ
- We converted the linear regression problem into dual form

- \bullet We started by defining linear regression in terms of long feature expansions Φ
- We converted the linear regression problem into dual form
- This gave us a solution in terms of the explicit inner product $\Phi\Phi^T$

- \bullet We started by defining linear regression in terms of long feature expansions Φ
- We converted the linear regression problem into dual form
- This gave us a solution in terms of the explicit inner product $\Phi\Phi^T$
- We've then replaced the explicit evaluation of the inner product an implicit evaluation in the **feature space** defined by the kernel function κ(x, x')

- \bullet We started by defining linear regression in terms of long feature expansions Φ
- We converted the linear regression problem into dual form
- This gave us a solution in terms of the explicit inner product $\Phi\Phi^T$
- We've then replaced the explicit evaluation of the inner product an implicit evaluation in the **feature space** defined by the kernel function κ(x, x')
- Which means we can do nonlinear regression in any feature space defined by κ , without having to actually compute it!

- \bullet We started by defining linear regression in terms of long feature expansions Φ
- We converted the linear regression problem into dual form
- This gave us a solution in terms of the explicit inner product $\Phi\Phi^T$
- We've then replaced the explicit evaluation of the inner product an implicit evaluation in the **feature space** defined by the kernel function κ(x, x')
- Which means we can do nonlinear regression in any feature space defined by κ , without having to actually compute it!
- This is known as the kernel trick

 The polynomial kernel allows us to do fast computation in spaces of exponentially increasing dimensions.

- The polynomial kernel allows us to do fast computation in spaces of exponentially increasing dimensions.
- Here's something even more awesome...
- We can go all the way and compute features of infinitely large dimensional spaces...

- The polynomial kernel allows us to do fast computation in spaces of exponentially increasing dimensions.
- Here's something even more awesome...
- We can go all the way and compute features of infinitely large dimensional spaces...
- Enter the Gaussian kernel function,

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{|\mathbf{x}_1 - \mathbf{x}_2|^2}{2\sigma^2}\right)$$

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{|\mathbf{x}_1 - \mathbf{x}_2|^2}{2\sigma^2}\right)$$

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{|\mathbf{x}_1 - \mathbf{x}_2|^2}{2\sigma^2}\right)$$

This innocent-looking expression actually comes from this feature vector (for one dimension only),

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{|\mathbf{x}_1 - \mathbf{x}_2|^2}{2\sigma^2}\right)$$

This innocent-looking expression actually comes from this feature vector (for one dimension only),

$$\phi(x_1) = \exp\left(-\frac{x_1^2}{2\sigma^2}\right) \left[1, \frac{x_1}{\sigma\sqrt{1!}}, \frac{x_1^2}{\sigma^2\sqrt{2!}}, \frac{x_1^3}{\sigma^3\sqrt{3!}}, ...,\right]^T$$

$$\kappa(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{|\mathbf{x}_1 - \mathbf{x}_2|^2}{2\sigma^2}\right)$$

This innocent-looking expression actually comes from this feature vector (for one dimension only),

$$\phi(x_1) = \exp\Big(-\frac{x_1^2}{2\sigma^2}\Big) \Big[1, \frac{x_1}{\sigma\sqrt{1!}}, \frac{x_1^2}{\sigma^2\sqrt{2!}}, \frac{x_1^3}{\sigma^3\sqrt{3!}}, ..., \Big]^T$$

which is an infinite vector but still $\phi(x_1) \cdot \phi(x_2)$ converges to $\kappa(\mathbf{x}_1, \mathbf{x}_2)$

$$\kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{|\mathbf{x} - \mathbf{x}'|^2}{2\sigma^2}\right)$$

 This is really powerful, as it gives us a numerically tractable way of using an infinite-dimensional feature space.

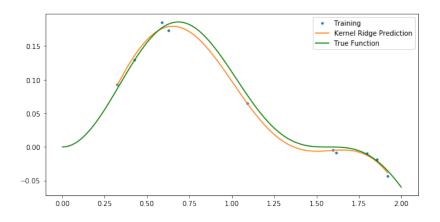
$$\kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{|\mathbf{x} - \mathbf{x}'|^2}{2\sigma^2}\right)$$

- This is really powerful, as it gives us a numerically tractable way of using an infinite-dimensional feature space.
- At this point, it helps to think of kernels simply as measures of similarity and closeness between pairs of samples.

$$\kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{|\mathbf{x} - \mathbf{x}'|^2}{2\sigma^2}\right)$$

- This is really powerful, as it gives us a numerically tractable way of using an infinite-dimensional feature space.
- At this point, it helps to think of kernels simply as measures of similarity and closeness between pairs of samples.
- (actually a large chunk of kernel methods were developed to deal with spatial statistical modelling of forest density...)

Kernel Ridge Regression example - Gaussian kernel



We can predict complex functions on large dimension using,

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

We can predict complex functions on large dimension using,

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

But why does it work?

We can predict complex functions on large dimension using,

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

But why does it work? Take one training point $[x_1, y_1] = [6, 10]$, then $\mathbf{K} = [\kappa(x_1, x_1)] = [1]$ and $\mathbf{y} = [y_1]$ (training data),

We can predict complex functions on large dimension using,

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

But why does it work? Take one training point $[x_1, y_1] = [6, 10]$, then $\mathbf{K} = [\kappa(x_1, x_1)] = [1]$ and $\mathbf{y} = [y_1]$ (training data),

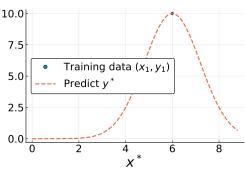
$$\mathbf{K}^* = [\kappa(x^*, x_1)] \text{ and } y^* \approx \kappa(x^*, x_1)y_1 = y_1 e^{-\frac{(x^* - x_1)^2}{2\sigma^2}}.$$

We can predict complex functions on large dimension using,

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

But why does it work? Take one training point $[x_1, y_1] = [6, 10]$, then $\mathbf{K} = [\kappa(x_1, x_1)] = [1]$ and $\mathbf{y} = [y_1]$ (training data),

$$\mathbf{K}^* = [\kappa(x^*, x_1)] \text{ and } y^* \approx \kappa(x^*, x_1)y_1 = y_1 e^{-\frac{(x^* - x_1)^2}{2\sigma^2}}.$$



$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

What about adding more training data?

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

$$\mathbf{y} = [y_1, y_2, y_3]^T$$
, $(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} = [a_1, a_2, a_3]^T$ (only training data),

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

$$\mathbf{y} = [y_1, y_2, y_3]^T$$
, $(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} = [a_1, a_2, a_3]^T$ (only training data), $\mathbf{K}^* = [\kappa(x^*, x_1), \kappa(x^*, x_2), \kappa(x^*, x_3)]$.

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

$$\mathbf{y} = [y_1, y_2, y_3]^T$$
, $(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} = [a_1, a_2, a_3]^T$ (only training data),

$$\mathbf{K}^* = [\kappa(x^*, x_1), \kappa(x^*, x_2), \kappa(x^*, x_3)]$$
, then

$$y^* = \mathbf{K}^*[a_1, a_2, a_3]^T = a_1 \kappa(x^*, x_1) + a_2 \kappa(x^*, x_2) + a_3 \kappa(x^*, x_3)$$
:

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

$$\mathbf{y} = [y_1, y_2, y_3]^T$$
, $(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} = [a_1, a_2, a_3]^T$ (only training data),

$$\mathbf{K}^* = [\kappa(x^*, x_1), \kappa(x^*, x_2), \kappa(x^*, x_3)]$$
, then

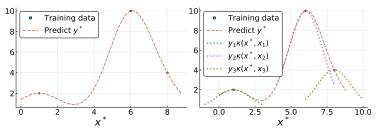
$$y^* = \mathbf{K}^*[a_1, a_2, a_3]^T = a_1 \kappa(x^*, x_1) + a_2 \kappa(x^*, x_2) + a_3 \kappa(x^*, x_3)$$
:

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

$$\mathbf{y} = [y_1, y_2, y_3]^T$$
, $(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} = [a_1, a_2, a_3]^T$ (only training data),

$$\mathbf{K}^* = [\kappa(x^*, x_1), \kappa(x^*, x_2), \kappa(x^*, x_3)], \text{ then}$$

$$y^* = \mathbf{K}^*[a_1, a_2, a_3]^T = a_1 \kappa(x^*, x_1) + a_2 \kappa(x^*, x_2) + a_3 \kappa(x^*, x_3)$$
:

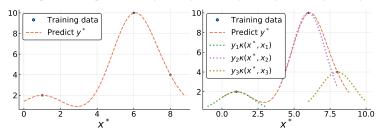


$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}, \quad \text{and} \quad \kappa(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right).$$

What about adding more training data? With three data points: $\mathbf{v} = [v_1, v_2, v_3]^T$ ($\mathbf{v} = [v_1, v_2, v_3]^T$ (only training data)

$$\mathbf{y} = [y_1, y_2, y_3]^T$$
, $(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y} = [a_1, a_2, a_3]^T$ (only training data), $\mathbf{K}^* = [\kappa(x^*, x_1), \kappa(x^*, x_2), \kappa(x^*, x_3)]$, then

$$y^* = \mathbf{K}^* [a_1, a_2, a_3]^T = a_1 \kappa(x^*, x_1) + a_2 \kappa(x^*, x_2) + a_3 \kappa(x^*, x_3)$$
:



If add $\sum_j y_j \kappa(x^*, x_j)$ we don't get y^* . The $a_j \neq y_j$ to compensate for the overlapping kernel functions $\kappa(x^*, x_i)$.

What have we learned today?

- learned about the dual form of linear regression
- introduced the kernel trick
- Shown that you can learn and predict fairly complex functions on large dimensions using,

$$\mathbf{y}^* = \mathbf{K}^* (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

where

$$K = \kappa(x, x')$$

(all pairs of training points), and

$$\mathbf{K}^* = \kappa(\mathbf{x}^*, \mathbf{x})$$

(pairs of training and prediction points)

• This is called **Kernel Ridge Regression**