
Kernel Machines

Ramon Fuentes1,2, Artur Gower3

August 8, 2019

1Visiting Researcher, Dynamics Research Group

The University of Sheffield

2Research Scientist, Callsign Ltd

3Lecturer in Dynamics

The University of Sheffield

Recap

• Ordinary Linear Regression

• Expansions into polynomial and other bases

• Bias and variance in models

• Regularisation as a method of balancing model complexity

1

Recap

• We are generally looking to solve y = Xw

• OLS: w = (XTX)−1XTy

• Ridge Regression: w = (XTX + λI)−1XTy

2

Feature spaces

• Linear regression model nonlinear problems through the use of

an expansion:

y = Φw

• For instance, a quadratic expansion would be defined as,

Φ = [1, x1, x2, x3, ..., xd , x
2
1, x1x2, x1x3, ..., x1xd ,

x2x1, x
2
2, x2x3, ..., x2xd , x3x1, x3x2, x

2
3, ...,

x3xd , . . . , xdx1, xdx2, xdx3, ..., x
2
d]

3

Expansions

• The solution with such an expansion can be simply formulated

as,

w = (ΦTΦ)−1ΦTy,

where Φ is a matrix with dp columns and n rows:

Φ =

φ(x1)
...

φ(xn)

 .

4

Expansions

• The solution with such an expansion can be simply formulated

as,

w = (ΦTΦ)−1ΦTy,

where Φ is a matrix with dp columns and n rows:

Φ =

φ(x1)
...

φ(xn)

 .

4

Expansions

• expansions, such as the polynomials can be very expressive -

we can model complex problems with them

• but lets think for a moment about how many columns there

are in a degree p polynomial...

• ∼ dp !

• imagine you had a data set with 10 variables (d) and required

fitting a polynomial with p = 5, how many features is that ?

5

Expansions

• The term ΦTΦ yields a dp × dp matrix, which we need to

invert

• Usually we need roughly as many training samples as we have

dimensions (!)

• Defining the expansions explicitly is

• computationally intractable

• and leads to numerically unstable matrix inversions

• Where on earth are we going to collect dp training samples?

... that’s a lot of time in the lab!

6

but there is hope...

7

what if...

• If only there was a way to learn and make predictions using

large number of features without actually having to compute

them?

• It turns out, there is!

• Using kernels

8

Dual form ridge regression

• There are two forms of linear regression: primal and dual

• So far we’ve learned about the primal, so lets have a look at

this other equivalent version

9

The dual form

Let’s use the feature map Φ with d dimensions so that:

y = Φw where w = A−1ΦTy, A = ΦTΦ + λIdp .

For a large number of features dp, and limited samples n, we can

avoid inverting the dp × dp matrix A by using some linear algebra!

AΦT = ΦT (ΦΦT + λIn) =⇒ ΦT (ΦΦT + λIn)−1 = A−1ΦT

Which means that

w = A−1ΦTy (primal form)

w = ΦT (ΦΦT + λIn)−1 = ΦTK−1y, (dual form)

where K = ΦΦT + λIn.

Amazing! K is a n × n matrix, and A is a dp × dp matrix.

We can choose to calculate K−1 or A−1.

10

The dual form

Let’s use the feature map Φ with d dimensions so that:

y = Φw where w = A−1ΦTy, A = ΦTΦ + λIdp .

For a large number of features dp, and limited samples n, we can

avoid inverting the dp × dp matrix A by using some linear algebra!

AΦT = ΦT (ΦΦT + λIn) =⇒ ΦT (ΦΦT + λIn)−1 = A−1ΦT

Which means that

w = A−1ΦTy (primal form)

w = ΦT (ΦΦT + λIn)−1 = ΦTK−1y, (dual form)

where K = ΦΦT + λIn.

Amazing! K is a n × n matrix, and A is a dp × dp matrix.

We can choose to calculate K−1 or A−1.

10

The dual form

Let’s use the feature map Φ with d dimensions so that:

y = Φw where w = A−1ΦTy, A = ΦTΦ + λIdp .

For a large number of features dp, and limited samples n, we can

avoid inverting the dp × dp matrix A by using some linear algebra!

AΦT = ΦT (ΦΦT + λIn) =⇒ ΦT (ΦΦT + λIn)−1 = A−1ΦT

Which means that

w = A−1ΦTy (primal form)

w = ΦT (ΦΦT + λIn)−1 = ΦTK−1y, (dual form)

where K = ΦΦT + λIn.

Amazing! K is a n × n matrix, and A is a dp × dp matrix.

We can choose to calculate K−1 or A−1.

10

The dual form

Let’s use the feature map Φ with d dimensions so that:

y = Φw where w = A−1ΦTy, A = ΦTΦ + λIdp .

For a large number of features dp, and limited samples n, we can

avoid inverting the dp × dp matrix A by using some linear algebra!

AΦT = ΦT (ΦΦT + λIn) =⇒ ΦT (ΦΦT + λIn)−1 = A−1ΦT

Which means that

w = A−1ΦTy (primal form)

w = ΦT (ΦΦT + λIn)−1 = ΦTK−1y, (dual form)

where K = ΦΦT + λIn.

Amazing! K is a n × n matrix, and A is a dp × dp matrix.

We can choose to calculate K−1 or A−1.

10

The dual form

Let’s use the feature map Φ with d dimensions so that:

y = Φw where w = A−1ΦTy, A = ΦTΦ + λIdp .

For a large number of features dp, and limited samples n, we can

avoid inverting the dp × dp matrix A by using some linear algebra!

AΦT = ΦT (ΦΦT + λIn) =⇒ ΦT (ΦΦT + λIn)−1 = A−1ΦT

Which means that

w = A−1ΦTy (primal form)

w = ΦT (ΦΦT + λIn)−1 = ΦTK−1y, (dual form)

where K = ΦΦT + λIn.

Amazing! K is a n × n matrix, and A is a dp × dp matrix.

We can choose to calculate K−1 or A−1.

10

The dual form

Let’s use the feature map Φ with d dimensions so that:

y = Φw where w = A−1ΦTy, A = ΦTΦ + λIdp .

For a large number of features dp, and limited samples n, we can

avoid inverting the dp × dp matrix A by using some linear algebra!

AΦT = ΦT (ΦΦT + λIn) =⇒ ΦT (ΦΦT + λIn)−1 = A−1ΦT

Which means that

w = A−1ΦTy (primal form)

w = ΦT (ΦΦT + λIn)−1 = ΦTK−1y, (dual form)

where K = ΦΦT + λIn.

Amazing! K is a n × n matrix, and A is a dp × dp matrix.

We can choose to calculate K−1 or A−1.

10

The dual form

Let’s use the feature map Φ with d dimensions so that:

y = Φw where w = A−1ΦTy, A = ΦTΦ + λIdp .

For a large number of features dp, and limited samples n, we can

avoid inverting the dp × dp matrix A by using some linear algebra!

AΦT = ΦT (ΦΦT + λIn) =⇒ ΦT (ΦΦT + λIn)−1 = A−1ΦT

Which means that

w = A−1ΦTy (primal form)

w = ΦT (ΦΦT + λIn)−1 = ΦTK−1y, (dual form)

where K = ΦΦT + λIn.

Amazing! K is a n × n matrix, and A is a dp × dp matrix.

We can choose to calculate K−1 or A−1.
10

A digression on notation...

At the this point, it is important to introduce notation to

distinguish between training and prediction samples:

Training samples: x, y

Prediction points: x∗, y∗

11

Dual Ridge Regression, predictive equations

In dual form we have that,

w = ΦTK−1y

so the predictive model is,

y∗ = Φ∗ΦTK−1y

where,

K = (ΦΦT + λIn)

12

Dual form ridge regression

• Why have we gone through all this trouble?

• Both primal and dual achieve the same end: predict y∗ given

X and x∗

• However, note:

• In primal, we invert a dp × dp matrix

• In dual, we invert an n × n matrix

• So which is better?

• Dual is better when dp � n, and this is the case in large

feature expansions

• If you had a 100000-dimensional space from a 5th-order

polynomial, but only 10 samples, you could solve for it by only

using those 10 samples, and inverting a 10 × 10 matrix !!!

13

Dual form ridge regression

• Why have we gone through all this trouble?

• Both primal and dual achieve the same end: predict y∗ given

X and x∗

• However, note:

• In primal, we invert a dp × dp matrix

• In dual, we invert an n × n matrix

• So which is better?

• Dual is better when dp � n, and this is the case in large

feature expansions

• If you had a 100000-dimensional space from a 5th-order

polynomial, but only 10 samples, you could solve for it by only

using those 10 samples, and inverting a 10 × 10 matrix !!!

13

Dual form ridge regression

• Why have we gone through all this trouble?

• Both primal and dual achieve the same end: predict y∗ given

X and x∗

• However, note:

• In primal, we invert a dp × dp matrix

• In dual, we invert an n × n matrix

• So which is better?

• Dual is better when dp � n, and this is the case in large

feature expansions

• If you had a 100000-dimensional space from a 5th-order

polynomial, but only 10 samples, you could solve for it by only

using those 10 samples, and inverting a 10 × 10 matrix !!!

13

Dual form ridge regression

• Why have we gone through all this trouble?

• Both primal and dual achieve the same end: predict y∗ given

X and x∗

• However, note:

• In primal, we invert a dp × dp matrix

• In dual, we invert an n × n matrix

• So which is better?

• Dual is better when dp � n, and this is the case in large

feature expansions

• If you had a 100000-dimensional space from a 5th-order

polynomial, but only 10 samples, you could solve for it by only

using those 10 samples, and inverting a 10 × 10 matrix !!!

13

Dual form ridge regression

• Why have we gone through all this trouble?

• Both primal and dual achieve the same end: predict y∗ given

X and x∗

• However, note:

• In primal, we invert a dp × dp matrix

• In dual, we invert an n × n matrix

• So which is better?

• Dual is better when dp � n, and this is the case in large

feature expansions

• If you had a 100000-dimensional space from a 5th-order

polynomial, but only 10 samples, you could solve for it by only

using those 10 samples, and inverting a 10 × 10 matrix !!!

13

Dual form ridge regression

• Why have we gone through all this trouble?

• Both primal and dual achieve the same end: predict y∗ given

X and x∗

• However, note:

• In primal, we invert a dp × dp matrix

• In dual, we invert an n × n matrix

• So which is better?

• Dual is better when dp � n, and this is the case in large

feature expansions

• If you had a 100000-dimensional space from a 5th-order

polynomial, but only 10 samples, you could solve for it by only

using those 10 samples, and inverting a 10 × 10 matrix !!!

13

Dual form ridge regression

• Why have we gone through all this trouble?

• Both primal and dual achieve the same end: predict y∗ given

X and x∗

• However, note:

• In primal, we invert a dp × dp matrix

• In dual, we invert an n × n matrix

• So which is better?

• Dual is better when dp � n, and this is the case in large

feature expansions

• If you had a 100000-dimensional space from a 5th-order

polynomial, but only 10 samples, you could solve for it by only

using those 10 samples, and inverting a 10 × 10 matrix !!!

13

Dual form ridge regression

• Why have we gone through all this trouble?

• Both primal and dual achieve the same end: predict y∗ given

X and x∗

• However, note:

• In primal, we invert a dp × dp matrix

• In dual, we invert an n × n matrix

• So which is better?

• Dual is better when dp � n, and this is the case in large

feature expansions

• If you had a 100000-dimensional space from a 5th-order

polynomial, but only 10 samples, you could solve for it by only

using those 10 samples, and inverting a 10 × 10 matrix !!!

13

Dual form regression

• So, we have gone from:

• having to compute a dp-dimensional feature space and solving

a severely under-determined dp × dp system

• solving such system by only inverting a 10× 10 matrix,

provided we can compute ΦΦT

• that is great!

• but what if we didn’t even have to compute ΦΦT ?

14

Dual form regression

• So, we have gone from:

• having to compute a dp-dimensional feature space and solving

a severely under-determined dp × dp system

• solving such system by only inverting a 10× 10 matrix,

provided we can compute ΦΦT

• that is great!

• but what if we didn’t even have to compute ΦΦT ?

14

Dual form regression

• So, we have gone from:

• having to compute a dp-dimensional feature space and solving

a severely under-determined dp × dp system

• solving such system by only inverting a 10× 10 matrix,

provided we can compute ΦΦT

• that is great!

• but what if we didn’t even have to compute ΦΦT ?

14

15

The kernel trick

• Have you noticed how both the dual and primal (our first

approach) depend on inner products? For example, ΦΦT ,

ΦTΦ and ΦΦT∗) ?

• It turns out there are easier ways to evaluate these inner

products in our feature space.

• To evaluate these inner products we use a kernel function

κ(x, x′)

• A linear kernel function gives us:

κ(x, x′) = x · x′ =
∑
j

xjx
′
j

16

The kernel trick

• Have you noticed how both the dual and primal (our first

approach) depend on inner products? For example, ΦΦT ,

ΦTΦ and ΦΦT∗) ?

• It turns out there are easier ways to evaluate these inner

products in our feature space.

• To evaluate these inner products we use a kernel function

κ(x, x′)

• A linear kernel function gives us:

κ(x, x′) = x · x′ =
∑
j

xjx
′
j

16

The kernel trick

• Have you noticed how both the dual and primal (our first

approach) depend on inner products? For example, ΦΦT ,

ΦTΦ and ΦΦT∗) ?

• It turns out there are easier ways to evaluate these inner

products in our feature space.

• To evaluate these inner products we use a kernel function

κ(x, x′)

• A linear kernel function gives us:

κ(x, x′) = x · x′ =
∑
j

xjx
′
j

16

The kernel trick

• Have you noticed how both the dual and primal (our first

approach) depend on inner products? For example, ΦΦT ,

ΦTΦ and ΦΦT∗) ?

• It turns out there are easier ways to evaluate these inner

products in our feature space.

• To evaluate these inner products we use a kernel function

κ(x, x′)

• A linear kernel function gives us:

κ(x, x′) = x · x′ =
∑
j

xjx
′
j

16

The kernel trick

Using the dual to predict y∗ from x∗ and X we need to calculate

y∗ = φ(x∗)w = φ(x∗)ΦTK−1y =[
φ(x∗) · φ(x1) . . . φ(x∗) · φ(xn)

]
K−1y,

where K = ΦΦT + λIn whose components are

K =


φ(x1) · φ(x1) φ(x1) · φ(x2) . . . φ(x1) · φ(xn)

φ(x2) · φ(x1) φ(x2) · φ(x2) . . . φ(x2) · φ(xn)
...

...

φ(xn) · φ(x1) φ(x2) · φ(xn) . . . φ(xn) · φ(xn)

+ λIn

So we need only calculate κ(x, x′) = φ(x) · φ(x′) many times!

17

The kernel trick

Using the dual to predict y∗ from x∗ and X we need to calculate

y∗ = φ(x∗)w = φ(x∗)ΦTK−1y =[
φ(x∗) · φ(x1) . . . φ(x∗) · φ(xn)

]
K−1y,

where K = ΦΦT + λIn whose components are

K =


φ(x1) · φ(x1) φ(x1) · φ(x2) . . . φ(x1) · φ(xn)

φ(x2) · φ(x1) φ(x2) · φ(x2) . . . φ(x2) · φ(xn)
...

...

φ(xn) · φ(x1) φ(x2) · φ(xn) . . . φ(xn) · φ(xn)

+ λIn

So we need only calculate κ(x, x′) = φ(x) · φ(x′) many times!

17

The kernel trick

Using the dual to predict y∗ from x∗ and X we need to calculate

y∗ = φ(x∗)w = φ(x∗)ΦTK−1y =[
φ(x∗) · φ(x1) . . . φ(x∗) · φ(xn)

]
K−1y,

where K = ΦΦT + λIn whose components are

K =


φ(x1) · φ(x1) φ(x1) · φ(x2) . . . φ(x1) · φ(xn)

φ(x2) · φ(x1) φ(x2) · φ(x2) . . . φ(x2) · φ(xn)
...

...

φ(xn) · φ(x1) φ(x2) · φ(xn) . . . φ(xn) · φ(xn)

+ λIn

So we need only calculate κ(x, x′) = φ(x) · φ(x′) many times!

17

The kernel trick

Using the dual to predict y∗ from x∗ and X we need to calculate

y∗ = φ(x∗)w = φ(x∗)ΦTK−1y =[
φ(x∗) · φ(x1) . . . φ(x∗) · φ(xn)

]
K−1y,

where K = ΦΦT + λIn whose components are

K =


φ(x1) · φ(x1) φ(x1) · φ(x2) . . . φ(x1) · φ(xn)

φ(x2) · φ(x1) φ(x2) · φ(x2) . . . φ(x2) · φ(xn)
...

...

φ(xn) · φ(x1) φ(x2) · φ(xn) . . . φ(xn) · φ(xn)

+ λIn

So we need only calculate κ(x, x′) = φ(x) · φ(x′) many times!

17

The kernel trick

• Now let’s use a polynomial kernel

κ(x, x′) = (x · x′ + 1)p

= φ(x) · φ(x′)

then, κ(x, x′) would contain every monomial in x of degree

0, ..., p.

Which is easier to calculate: (x · x′ + 1)p or both φ(x) and

φ(x′)?

18

The kernel trick

• Now let’s use a polynomial kernel

κ(x, x′) = (x · x′ + 1)p

= φ(x) · φ(x′)

then, κ(x, x′) would contain every monomial in x of degree

0, ..., p.

Which is easier to calculate: (x · x′ + 1)p or both φ(x) and

φ(x′)?

18

The kernel trick

• Now let’s use a polynomial kernel

κ(x, x′) = (x · x′ + 1)p

= φ(x) · φ(x′)

then, κ(x, x′) would contain every monomial in x of degree

0, ..., p.

Which is easier to calculate: (x · x′ + 1)p or both φ(x) and

φ(x′)?

18

The kernel trick: example

• We have now defined the regression problem in terms of a

kernel function

• To compute the kernel matrix, with the polynomial kernel, we

don’t need to evaluate Φ at all!

• Instead, we evaluate the function (x · x′ + 1)p for every pair of

training samples x and x′

• We can now do polynomial regression with an exponentially

long, high-order polynomial in less time than it would take

even to compute Φ

• This is MIND BLOWING!

19

The kernel trick: example

• We have now defined the regression problem in terms of a

kernel function

• To compute the kernel matrix, with the polynomial kernel, we

don’t need to evaluate Φ at all!

• Instead, we evaluate the function (x · x′ + 1)p for every pair of

training samples x and x′

• We can now do polynomial regression with an exponentially

long, high-order polynomial in less time than it would take

even to compute Φ

• This is MIND BLOWING!

19

The kernel trick: example

• We have now defined the regression problem in terms of a

kernel function

• To compute the kernel matrix, with the polynomial kernel, we

don’t need to evaluate Φ at all!

• Instead, we evaluate the function (x · x′ + 1)p for every pair of

training samples x and x′

• We can now do polynomial regression with an exponentially

long, high-order polynomial in less time than it would take

even to compute Φ

• This is MIND BLOWING!

19

The kernel trick: example

• We have now defined the regression problem in terms of a

kernel function

• To compute the kernel matrix, with the polynomial kernel, we

don’t need to evaluate Φ at all!

• Instead, we evaluate the function (x · x′ + 1)p for every pair of

training samples x and x′

• We can now do polynomial regression with an exponentially

long, high-order polynomial in less time than it would take

even to compute Φ

• This is MIND BLOWING!

19

The kernel trick: example

• We have now defined the regression problem in terms of a

kernel function

• To compute the kernel matrix, with the polynomial kernel, we

don’t need to evaluate Φ at all!

• Instead, we evaluate the function (x · x′ + 1)p for every pair of

training samples x and x′

• We can now do polynomial regression with an exponentially

long, high-order polynomial in less time than it would take

even to compute Φ

• This is MIND BLOWING!

19

Kernel Ridge regression example

20

Kernel trick

Lets recap on what we’ve done so far

• We started by defining linear regression in terms of long

feature expansions Φ

• We converted the linear regression problem into dual form

• This gave us a solution in terms of the explicit inner product

ΦΦT

• We’ve then replaced the explicit evaluation of the inner

product an implicit evaluation in the feature space defined

by the kernel function κ(x, x′)

• Which means we can do nonlinear regression in any feature

space defined by κ, without having to actually compute it!

• This is known as the kernel trick

21

Kernel trick

Lets recap on what we’ve done so far

• We started by defining linear regression in terms of long

feature expansions Φ

• We converted the linear regression problem into dual form

• This gave us a solution in terms of the explicit inner product

ΦΦT

• We’ve then replaced the explicit evaluation of the inner

product an implicit evaluation in the feature space defined

by the kernel function κ(x, x′)

• Which means we can do nonlinear regression in any feature

space defined by κ, without having to actually compute it!

• This is known as the kernel trick

21

Kernel trick

Lets recap on what we’ve done so far

• We started by defining linear regression in terms of long

feature expansions Φ

• We converted the linear regression problem into dual form

• This gave us a solution in terms of the explicit inner product

ΦΦT

• We’ve then replaced the explicit evaluation of the inner

product an implicit evaluation in the feature space defined

by the kernel function κ(x, x′)

• Which means we can do nonlinear regression in any feature

space defined by κ, without having to actually compute it!

• This is known as the kernel trick

21

Kernel trick

Lets recap on what we’ve done so far

• We started by defining linear regression in terms of long

feature expansions Φ

• We converted the linear regression problem into dual form

• This gave us a solution in terms of the explicit inner product

ΦΦT

• We’ve then replaced the explicit evaluation of the inner

product an implicit evaluation in the feature space defined

by the kernel function κ(x, x′)

• Which means we can do nonlinear regression in any feature

space defined by κ, without having to actually compute it!

• This is known as the kernel trick

21

Kernel trick

Lets recap on what we’ve done so far

• We started by defining linear regression in terms of long

feature expansions Φ

• We converted the linear regression problem into dual form

• This gave us a solution in terms of the explicit inner product

ΦΦT

• We’ve then replaced the explicit evaluation of the inner

product an implicit evaluation in the feature space defined

by the kernel function κ(x, x′)

• Which means we can do nonlinear regression in any feature

space defined by κ, without having to actually compute it!

• This is known as the kernel trick

21

Kernel trick

Lets recap on what we’ve done so far

• We started by defining linear regression in terms of long

feature expansions Φ

• We converted the linear regression problem into dual form

• This gave us a solution in terms of the explicit inner product

ΦΦT

• We’ve then replaced the explicit evaluation of the inner

product an implicit evaluation in the feature space defined

by the kernel function κ(x, x′)

• Which means we can do nonlinear regression in any feature

space defined by κ, without having to actually compute it!

• This is known as the kernel trick

21

The Gaussian Kernel

• The polynomial kernel allows us to do fast computation in

spaces of exponentially increasing dimensions.

• Here’s something even more awesome...

• We can go all the way and compute features of infinitely

large dimensional spaces...

• Enter the Gaussian kernel function,

κ(x1, x2) = exp
(
− |x1 − x2|2

2σ2

)

22

The Gaussian Kernel

• The polynomial kernel allows us to do fast computation in

spaces of exponentially increasing dimensions.

• Here’s something even more awesome...

• We can go all the way and compute features of infinitely

large dimensional spaces...

• Enter the Gaussian kernel function,

κ(x1, x2) = exp
(
− |x1 − x2|2

2σ2

)

22

The Gaussian Kernel

• The polynomial kernel allows us to do fast computation in

spaces of exponentially increasing dimensions.

• Here’s something even more awesome...

• We can go all the way and compute features of infinitely

large dimensional spaces...

• Enter the Gaussian kernel function,

κ(x1, x2) = exp
(
− |x1 − x2|2

2σ2

)

22

The Gaussian kernel

κ(x1, x2) = exp
(
− |x1 − x2|2

2σ2

)

This innocent-looking expression actually comes from this feature

vector (for one dimension only),

φ(x1) = exp
(
− x2

1

2σ2

)[
1,

x1

σ
√

1!
,

x2
1

σ2
√

2!
,

x3
1

σ3
√

3!
, ...,

]T
which is an infinite vector but still φ(x1) · φ(x2) converges to

κ(x1, x2)

23

The Gaussian kernel

κ(x1, x2) = exp
(
− |x1 − x2|2

2σ2

)
This innocent-looking expression actually comes from this feature

vector (for one dimension only),

φ(x1) = exp
(
− x2

1

2σ2

)[
1,

x1

σ
√

1!
,

x2
1

σ2
√

2!
,

x3
1

σ3
√

3!
, ...,

]T
which is an infinite vector but still φ(x1) · φ(x2) converges to

κ(x1, x2)

23

The Gaussian kernel

κ(x1, x2) = exp
(
− |x1 − x2|2

2σ2

)
This innocent-looking expression actually comes from this feature

vector (for one dimension only),

φ(x1) = exp
(
− x2

1

2σ2

)[
1,

x1

σ
√

1!
,

x2
1

σ2
√

2!
,

x3
1

σ3
√

3!
, ...,

]T

which is an infinite vector but still φ(x1) · φ(x2) converges to

κ(x1, x2)

23

The Gaussian kernel

κ(x1, x2) = exp
(
− |x1 − x2|2

2σ2

)
This innocent-looking expression actually comes from this feature

vector (for one dimension only),

φ(x1) = exp
(
− x2

1

2σ2

)[
1,

x1

σ
√

1!
,

x2
1

σ2
√

2!
,

x3
1

σ3
√

3!
, ...,

]T
which is an infinite vector but still φ(x1) · φ(x2) converges to

κ(x1, x2)

23

24

The Gaussian kernel

κ(x, x′) = exp
(
− |x− x′|2

2σ2

)
• This is really powerful, as it gives us a numerically tractable

way of using an infinite-dimensional feature space.

• At this point, it helps to think of kernels simply as measures

of similarity and closeness between pairs of samples.

• (actually a large chunk of kernel methods were developed to

deal with spatial statistical modelling of forest density...)

25

The Gaussian kernel

κ(x, x′) = exp
(
− |x− x′|2

2σ2

)
• This is really powerful, as it gives us a numerically tractable

way of using an infinite-dimensional feature space.

• At this point, it helps to think of kernels simply as measures

of similarity and closeness between pairs of samples.

• (actually a large chunk of kernel methods were developed to

deal with spatial statistical modelling of forest density...)

25

The Gaussian kernel

κ(x, x′) = exp
(
− |x− x′|2

2σ2

)
• This is really powerful, as it gives us a numerically tractable

way of using an infinite-dimensional feature space.

• At this point, it helps to think of kernels simply as measures

of similarity and closeness between pairs of samples.

• (actually a large chunk of kernel methods were developed to

deal with spatial statistical modelling of forest density...)

25

Kernel Ridge Regression example - Gaussian kernel

26

Some intuition on kernels

We can predict complex functions on large dimension using,

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

But why does it work? Take one training point [x1, y1] = [6, 10],

then K = [κ(x1, x1)] = [1] and y = [y1] (training data),

K∗ = [κ(x∗, x1)] and y∗ ≈ κ(x∗, x1)y1 = y1e
− (x∗−x1)2

2σ2 .

0 2 4 6 8
x *

0.0

2.5

5.0

7.5

10.0

Training data (x1, y1)
Predict y *

27

Some intuition on kernels

We can predict complex functions on large dimension using,

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

But why does it work?

Take one training point [x1, y1] = [6, 10],

then K = [κ(x1, x1)] = [1] and y = [y1] (training data),

K∗ = [κ(x∗, x1)] and y∗ ≈ κ(x∗, x1)y1 = y1e
− (x∗−x1)2

2σ2 .

0 2 4 6 8
x *

0.0

2.5

5.0

7.5

10.0

Training data (x1, y1)
Predict y *

27

Some intuition on kernels

We can predict complex functions on large dimension using,

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

But why does it work? Take one training point [x1, y1] = [6, 10],

then K = [κ(x1, x1)] = [1] and y = [y1] (training data),

K∗ = [κ(x∗, x1)] and y∗ ≈ κ(x∗, x1)y1 = y1e
− (x∗−x1)2

2σ2 .

0 2 4 6 8
x *

0.0

2.5

5.0

7.5

10.0

Training data (x1, y1)
Predict y *

27

Some intuition on kernels

We can predict complex functions on large dimension using,

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

But why does it work? Take one training point [x1, y1] = [6, 10],

then K = [κ(x1, x1)] = [1] and y = [y1] (training data),

K∗ = [κ(x∗, x1)] and y∗ ≈ κ(x∗, x1)y1 = y1e
− (x∗−x1)2

2σ2 .

0 2 4 6 8
x *

0.0

2.5

5.0

7.5

10.0

Training data (x1, y1)
Predict y *

27

Some intuition on kernels

We can predict complex functions on large dimension using,

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

But why does it work? Take one training point [x1, y1] = [6, 10],

then K = [κ(x1, x1)] = [1] and y = [y1] (training data),

K∗ = [κ(x∗, x1)] and y∗ ≈ κ(x∗, x1)y1 = y1e
− (x∗−x1)2

2σ2 .

0 2 4 6 8
x *

0.0

2.5

5.0

7.5

10.0

Training data (x1, y1)
Predict y *

27

Some intuition on kernels

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

What about adding more training data?

With three data points:

y = [y1, y2, y3]T , (K + λI)−1y = [a1, a2, a3]T (only training data),

K∗ = [κ(x∗, x1), κ(x∗, x2), κ(x∗, x3)], then

y∗ = K∗[a1, a2, a3]T = a1κ(x∗, x1) + a2κ(x∗, x2) + a3κ(x∗, x3):

0 2 4 6 8
x *

2

4

6

8

10
Training data
Predict y *

0.0 2.5 5.0 7.5 10.0
x *

2

4

6

8

10
Training data
Predict y *

y1 (x * , x1)
y2 (x * , x2)
y3 (x * , x3)

If add
∑

j yjκ(x∗, xj) we don’t get y∗. The aj 6= yj to compensate

for the overlapping kernel functions κ(x∗, xj).

28

Some intuition on kernels

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

What about adding more training data? With three data points:

y = [y1, y2, y3]T , (K + λI)−1y = [a1, a2, a3]T (only training data),

K∗ = [κ(x∗, x1), κ(x∗, x2), κ(x∗, x3)], then

y∗ = K∗[a1, a2, a3]T = a1κ(x∗, x1) + a2κ(x∗, x2) + a3κ(x∗, x3):

0 2 4 6 8
x *

2

4

6

8

10
Training data
Predict y *

0.0 2.5 5.0 7.5 10.0
x *

2

4

6

8

10
Training data
Predict y *

y1 (x * , x1)
y2 (x * , x2)
y3 (x * , x3)

If add
∑

j yjκ(x∗, xj) we don’t get y∗. The aj 6= yj to compensate

for the overlapping kernel functions κ(x∗, xj).

28

Some intuition on kernels

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

What about adding more training data? With three data points:

y = [y1, y2, y3]T , (K + λI)−1y = [a1, a2, a3]T (only training data),

K∗ = [κ(x∗, x1), κ(x∗, x2), κ(x∗, x3)],

then

y∗ = K∗[a1, a2, a3]T = a1κ(x∗, x1) + a2κ(x∗, x2) + a3κ(x∗, x3):

0 2 4 6 8
x *

2

4

6

8

10
Training data
Predict y *

0.0 2.5 5.0 7.5 10.0
x *

2

4

6

8

10
Training data
Predict y *

y1 (x * , x1)
y2 (x * , x2)
y3 (x * , x3)

If add
∑

j yjκ(x∗, xj) we don’t get y∗. The aj 6= yj to compensate

for the overlapping kernel functions κ(x∗, xj).

28

Some intuition on kernels

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

What about adding more training data? With three data points:

y = [y1, y2, y3]T , (K + λI)−1y = [a1, a2, a3]T (only training data),

K∗ = [κ(x∗, x1), κ(x∗, x2), κ(x∗, x3)], then

y∗ = K∗[a1, a2, a3]T = a1κ(x∗, x1) + a2κ(x∗, x2) + a3κ(x∗, x3):

0 2 4 6 8
x *

2

4

6

8

10
Training data
Predict y *

0.0 2.5 5.0 7.5 10.0
x *

2

4

6

8

10
Training data
Predict y *

y1 (x * , x1)
y2 (x * , x2)
y3 (x * , x3)

If add
∑

j yjκ(x∗, xj) we don’t get y∗. The aj 6= yj to compensate

for the overlapping kernel functions κ(x∗, xj).

28

Some intuition on kernels

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

What about adding more training data? With three data points:

y = [y1, y2, y3]T , (K + λI)−1y = [a1, a2, a3]T (only training data),

K∗ = [κ(x∗, x1), κ(x∗, x2), κ(x∗, x3)], then

y∗ = K∗[a1, a2, a3]T = a1κ(x∗, x1) + a2κ(x∗, x2) + a3κ(x∗, x3):

0 2 4 6 8
x *

2

4

6

8

10
Training data
Predict y *

0.0 2.5 5.0 7.5 10.0
x *

2

4

6

8

10
Training data
Predict y *

y1 (x * , x1)
y2 (x * , x2)
y3 (x * , x3)

If add
∑

j yjκ(x∗, xj) we don’t get y∗. The aj 6= yj to compensate

for the overlapping kernel functions κ(x∗, xj).

28

Some intuition on kernels

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

What about adding more training data? With three data points:

y = [y1, y2, y3]T , (K + λI)−1y = [a1, a2, a3]T (only training data),

K∗ = [κ(x∗, x1), κ(x∗, x2), κ(x∗, x3)], then

y∗ = K∗[a1, a2, a3]T = a1κ(x∗, x1) + a2κ(x∗, x2) + a3κ(x∗, x3):

0 2 4 6 8
x *

2

4

6

8

10
Training data
Predict y *

0.0 2.5 5.0 7.5 10.0
x *

2

4

6

8

10
Training data
Predict y *

y1 (x * , x1)
y2 (x * , x2)
y3 (x * , x3)

If add
∑

j yjκ(x∗, xj) we don’t get y∗. The aj 6= yj to compensate

for the overlapping kernel functions κ(x∗, xj).

28

Some intuition on kernels

y∗ = K∗(K + λI)−1y, and κ(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
.

What about adding more training data? With three data points:

y = [y1, y2, y3]T , (K + λI)−1y = [a1, a2, a3]T (only training data),

K∗ = [κ(x∗, x1), κ(x∗, x2), κ(x∗, x3)], then

y∗ = K∗[a1, a2, a3]T = a1κ(x∗, x1) + a2κ(x∗, x2) + a3κ(x∗, x3):

0 2 4 6 8
x *

2

4

6

8

10
Training data
Predict y *

0.0 2.5 5.0 7.5 10.0
x *

2

4

6

8

10
Training data
Predict y *

y1 (x * , x1)
y2 (x * , x2)
y3 (x * , x3)

If add
∑

j yjκ(x∗, xj) we don’t get y∗. The aj 6= yj to compensate

for the overlapping kernel functions κ(x∗, xj). 28

What have we learned today?

• learned about the dual form of linear regression

• introduced the kernel trick

• Shown that you can learn and predict fairly complex functions

on large dimensions using,

y∗ = K∗(K + λI)−1y

where

K = κ(x, x′)

(all pairs of training points), and

K∗ = κ(x∗, x)

(pairs of training and prediction points)

• This is called Kernel Ridge Regression

29

