Kernel Machines

Ramon Fuentes!?2, Artur Gower3
August 8, 2019

LVisiting Researcher, Dynamics Research Group
The University of Sheffield

2Research Scientist, Callsign Ltd

3Lecturer in Dynamics
The University of Sheffield



Ordinary Linear Regression

Expansions into polynomial and other bases

Bias and variance in models

Regularisation as a method of balancing model complexity



e We are generally looking to solve y = Xw
e OLS: w=(X"TX)"1XTy
e Ridge Regression: w = (XTX + A)~1XTy



Feature spaces

e Linear regression model nonlinear problems through the use of
an expansion:
y = dw

e For instance, a quadratic expansion would be defined as,
2
P = [].,Xl, X2, X3, ..., Xg, X7, X1X2, X1X3, ..., X1X{,

2 2
X2X1, X5, X2X3, ..., X2X4, X3X1, X3X2, X3, ...,

2
X3Xd, - - -y XdX1, XgX2, XgX3, ..., Xg]



e The solution with such an expansion can be simply formulated
as,
w=(o"Td)loTy,



e The solution with such an expansion can be simply formulated
as,
w=(o"Td)loTy,
where ® is a matrix with dP columns and n rows:
d(x1)
b = :
P(xn)



e expansions, such as the polynomials can be very expressive -
we can model complex problems with them

e but lets think for a moment about how many columns there
are in a degree p polynomial...

o ~ dP |

e imagine you had a data set with 10 variables (d) and required
fitting a polynomial with p =5, how many features is that ?



The term @7 ® vyields a dP x dP matrix, which we need to
invert

Usually we need roughly as many training samples as we have
dimensions (!)

Defining the expansions explicitly is
e computationally intractable
e and leads to numerically unstable matrix inversions

Where on earth are we going to collect dP training samples?
... that's a lot of time in the lab!



but there is hope...




e If only there was a way to learn and make predictions using
large number of features without actually having to compute
them?

e It turns out, there is!

e Using kernels



Dual form ridge regression

e There are two forms of linear regression: primal and dual

e So far we've learned about the primal, so lets have a look at
this other equivalent version



The dual form

Let's use the feature map ® with d dimensions so that:

10



The dual form

Let's use the feature map ® with d dimensions so that:

y =®w where w=A"10Ty, A=dTd + \gp.

10



The dual form

Let's use the feature map ® with d dimensions so that:

y =®w where w=A"10Ty, A=dTd + \gp.

For a large number of features d”, and limited samples n, we can
avoid inverting the dP x dP matrix A by using some linear algebra!

10



The dual form

Let's use the feature map ® with d dimensions so that:

y =®w where w=A"10Ty, A=dTd + \gp.

For a large number of features d”, and limited samples n, we can
avoid inverting the dP x dP matrix A by using some linear algebra!

AT =T (ddT +AlI,) = dT(ddT +AI,) T =AtoT

10



The dual form

Let's use the feature map ® with d dimensions so that:

y =®w where w=A"10Ty, A=dTd + \gp.

For a large number of features d”, and limited samples n, we can
avoid inverting the dP x dP matrix A by using some linear algebra!

AT =T (ddT +AlI,) = dT(ddT +AI,) T =AtoT
Which means that
w=A"ltoTy (primal form)
w=0o"(dd” +Al,)" ' =d"Kly, (dual form)
where K = ®® 7 + \l,,.

10



The dual form

Let's use the feature map ® with d dimensions so that:
y =®w where w=A"10Ty, A=dTd + \gp.

For a large number of features d”, and limited samples n, we can
avoid inverting the dP x dP matrix A by using some linear algebra!

AT =T (ddT +AlI,) = dT(ddT +AI,) T =AtoT
Which means that
w=A"ltoTy (primal form)
w=0o"(dd” +Al,)" ' =d"Kly, (dual form)
where K = ®® 7 + \l,,.

Amazing! K is a n x n matrix, and A is a d”? x dP matrix.

10



The dual form

Let's use the feature map ® with d dimensions so that:
y =®w where w=A"10Ty, A=dTd + \gp.

For a large number of features d”, and limited samples n, we can
avoid inverting the dP x dP matrix A by using some linear algebra!

AT =T (ddT +AlI,) = dT(ddT +AI,) T =AtoT
Which means that
w=A"ltoTy (primal form)
w=0o"(dd” +Al,)" ' =d"Kly, (dual form)
where K = &7 + )l,,.
Amazing! K is a n x n matrix, and A is a d”? x dP matrix.

We can choose to calculate K—1 or A~1L. 10



A digression on notation...

At the this point, it is important to introduce notation to
distinguish between training and prediction samples:

Training samples: x,y

Prediction points: x*,y*

11



Dual Ridge Regression, predictive equations

In dual form we have that,
w=0adTKly
so the predictive model is,

y* _ ¢*¢TK—1y

where,
K= (®®7 + \,)

12



Dual form ridge regression

e Why have we gone through all this trouble?

13



Dual form ridge regression

e Why have we gone through all this trouble?

e Both primal and dual achieve the same end: predict y* given
X and x*

13



Dual form ridge regression

e Why have we gone through all this trouble?

e Both primal and dual achieve the same end: predict y* given
X and x*

e However, note:

13



Dual form ridge regression

e Why have we gone through all this trouble?

e Both primal and dual achieve the same end: predict y* given
X and x*

e However, note:

e In primal, we invert a dP x dP matrix

13



Dual form ridge regression

e Why have we gone through all this trouble?

e Both primal and dual achieve the same end: predict y* given
X and x*
e However, note:

e In primal, we invert a dP x dP matrix
e In dual, we invert an n X n matrix

13



Dual form ridge regression

e Why have we gone through all this trouble?

e Both primal and dual achieve the same end: predict y* given
X and x*

e However, note:

e In primal, we invert a dP x dP matrix
e In dual, we invert an n X n matrix
e So which is better?

13



Dual form ridge regression

e Why have we gone through all this trouble?

e Both primal and dual achieve the same end: predict y* given
X and x*

e However, note:
e In primal, we invert a dP x dP matrix
e In dual, we invert an n X n matrix
e So which is better?
e Dual is better when dP > n, and this is the case in large
feature expansions

13



Dual form ridge regression

e Why have we gone through all this trouble?

e Both primal and dual achieve the same end: predict y* given
X and x*

e However, note:

In primal, we invert a d” x dP matrix

In dual, we invert an n x n matrix
So which is better?
Dual is better when d” > n, and this is the case in large

feature expansions

e If you had a 100000-dimensional space from a 5%-order
polynomial, but only 10 samples, you could solve for it by only
using those 10 samples, and inverting a 10 x 10 matrix !!!

13



Dual form regression

e So, we have gone from:

e having to compute a dP-dimensional feature space and solving
a severely under-determined d? x dP system

14



Dual form regression

e So, we have gone from:
e having to compute a dP-dimensional feature space and solving
a severely under-determined d? x dP system
e solving such system by only inverting a 10 x 10 matrix,
provided we can compute od’

14



Dual form regression

e So, we have gone from:

e having to compute a dP-dimensional feature space and solving
a severely under-determined d? x dP system

e solving such system by only inverting a 10 x 10 matrix,
provided we can compute od’

e that is great!

e but what if we didn’t even have to compute ®d7?

14






The kernel trick

e Have you noticed how both the dual and primal (our first
approach) depend on inner products? For example, YO
& and dd ) ?

16



The kernel trick

e Have you noticed how both the dual and primal (our first
approach) depend on inner products? For example, YO
& and dd ) ?

e |t turns out there are easier ways to evaluate these inner
products in our feature space.

16



The kernel trick

e Have you noticed how both the dual and primal (our first
approach) depend on inner products? For example, YO
& and dd ) ?

e |t turns out there are easier ways to evaluate these inner
products in our feature space.

e To evaluate these inner products we use a kernel function

k(x,x)

16



The kernel trick

e Have you noticed how both the dual and primal (our first
approach) depend on inner products? For example, YO
& and dd ) ?

e |t turns out there are easier ways to evaluate these inner

products in our feature space.

e To evaluate these inner products we use a kernel function

k(x,x)

A linear kernel function gives us:

Alox) = xx =3 Dy
J

16



The kernel trick

Using the dual to predict y* from x* and X we need to calculate

17



The kernel trick

Using the dual to predict y* from x* and X we need to calculate

Y =o(x)w = g(x" )@ Kty =
B(x) - B(x1) ... G(x*) d(xn)| Ky,

17



The kernel trick

Using the dual to predict y* from x* and X we need to calculate

Y =o(x)w = g(x" )@ Kty =
B(x) - B(x1) ... G(x*) d(xn)| Ky,

where K = ®®7 + \l, whose components are

d(xn)
K — d(xn)

d(x1) - o(x1) é(xa)-o(x2) ... o(x1)-
-~ p(x1
_ L,

x1
o(x2) - o(x1) d(x2)-d(x2) ... d(x)-

P(xn) - (1) ¢(x2) - ¢(xa) .o D(xn) - ()

17



The kernel trick

Using the dual to predict y* from x* and X we need to calculate
y* _ (b(X*)W _ ¢(X*)¢TK_1y —
O(x) - plxa) ... B(x") - B(xn)| KTy,
where K = ®®7 + \l, whose components are

o(x) - o(xa) d(x) o) ... é(x)-
K — - P(x1

x1
o(x2) - o(x1) d(x2)-d(x2) ... d(x)-

D) - 6(x) D0) - 0(xa) . D) - 0(x0)

So we need only calculate x(x,x") = ¢(x) - ¢(x’) many times!

17



The kernel trick

e Now let’s use a polynomial kernel

k(x,x') = (x-x' + 1)P
= ¢(x) - ¢(x')

18



The kernel trick

e Now let’s use a polynomial kernel

k(x,x') = (x-x' + 1)P
= ¢(x) - ¢(x')

then, k(x,x") would contain every monomial in x of degree
0,...p.

18



The kernel trick

e Now let’s use a polynomial kernel

k(x,x') = (x-x' + 1)P

= 6(x) - 6(x)
then, k(x,x") would contain every monomial in x of degree
0,...p.
Which is easier to calculate: (x-x’ 4 1)P or both ¢(x) and
¢(x)?

18



The kernel trick: example

e We have now defined the regression problem in terms of a
kernel function

19



The kernel trick: example

e We have now defined the regression problem in terms of a
kernel function

e To compute the kernel matrix, with the polynomial kernel, we
don't need to evaluate ® at all!

19



The kernel trick: example

e We have now defined the regression problem in terms of a
kernel function

e To compute the kernel matrix, with the polynomial kernel, we
don’t need to evaluate ® at all!

e Instead, we evaluate the function (x - x' 4+ 1)P for every pair of
training samples x and x’

19



The kernel trick: example

e We have now defined the regression problem in terms of a
kernel function

e To compute the kernel matrix, with the polynomial kernel, we
don’t need to evaluate ® at all!

e Instead, we evaluate the function (x - x' 4+ 1)P for every pair of
training samples x and x’

e We can now do polynomial regression with an exponentially
long, high-order polynomial in less time than it would take

even to compute @

19



The kernel trick: example

e We have now defined the regression problem in terms of a
kernel function

e To compute the kernel matrix, with the polynomial kernel, we
don’t need to evaluate ® at all!

e Instead, we evaluate the function (x - x' 4+ 1)P for every pair of
training samples x and x’

e We can now do polynomial regression with an exponentially
long, high-order polynomial in less time than it would take

even to compute @

e This is MIND BLOWING!

19



Kernel Ridge regression example

5_ A
a4

-5 4 i

—— ground truth
=101 —— degree 3
degree 4
degree 5
—154 @ training points

0 2 4 6 8 10

20



Kernel trick

Lets recap on what we've done so far

e We started by defining linear regression in terms of long
feature expansions ®

21



Kernel trick

Lets recap on what we've done so far

e We started by defining linear regression in terms of long
feature expansions ®
e We converted the linear regression problem into dual form

21



Kernel trick

Lets recap on what we've done so far

e We started by defining linear regression in terms of long
feature expansions ®

e We converted the linear regression problem into dual form

e This gave us a solution in terms of the explicit inner product
b7

21



Kernel trick

Lets recap on what we've done so far

e We started by defining linear regression in terms of long
feature expansions ®

e We converted the linear regression problem into dual form

e This gave us a solution in terms of the explicit inner product
b7

e We've then replaced the explicit evaluation of the inner

product an implicit evaluation in the feature space defined
by the kernel function k(x,x’)

21



Kernel trick

Lets recap on what we've done so far

e We started by defining linear regression in terms of long
feature expansions ®

e We converted the linear regression problem into dual form

e This gave us a solution in terms of the explicit inner product
b7

e We've then replaced the explicit evaluation of the inner
product an implicit evaluation in the feature space defined
by the kernel function k(x,x’)

e Which means we can do nonlinear regression in any feature
space defined by x, without having to actually compute it!

21



Kernel trick

Lets recap on what we've done so far

e We started by defining linear regression in terms of long
feature expansions ®

e We converted the linear regression problem into dual form

e This gave us a solution in terms of the explicit inner product
b7

e We've then replaced the explicit evaluation of the inner
product an implicit evaluation in the feature space defined

by the kernel function k(x,x’)

e Which means we can do nonlinear regression in any feature
space defined by x, without having to actually compute it!

e This is known as the kernel trick

21



The Gaussian Kernel

e The polynomial kernel allows us to do fast computation in
spaces of exponentially increasing dimensions.

22



The Gaussian Kernel

e The polynomial kernel allows us to do fast computation in
spaces of exponentially increasing dimensions.

e Here's something even more awesome...

e We can go all the way and compute features of infinitely
large dimensional spaces...

22



The Gaussian Kernel

The polynomial kernel allows us to do fast computation in
spaces of exponentially increasing dimensions.

e Here's something even more awesome...

e We can go all the way and compute features of infinitely
large dimensional spaces...

Enter the Gaussian kernel function,

_x —X22)

r(x1,%2) = exp ( 552

22



The Gaussian kernel

Cxa— X2|2>

k(x1,X2) = exp ( 502

23



The Gaussian kernel

Cxa— X2|2>
202
This innocent-looking expression actually comes from this feature

k(x1,X2) = exp (

vector (for one dimension only),

23



The Gaussian kernel

Cxa— X2|2>
202
This innocent-looking expression actually comes from this feature

k(x1,X2) = exp (

vector (for one dimension only),

2 3
X1 Xi X7 } T

d(x1) = exp ( — ﬁ) [1, VTR, TR

X2

23



The Gaussian kernel

Cxa— X2|2>
202
This innocent-looking expression actually comes from this feature

k(x1,X2) = exp (

vector (for one dimension only),

2 3
X1 Xi X7 } T

d(x1) = exp ( — ﬁ) [1, VTR, TR

which is an infinite vector but still ¢(x1) - ¢(x2) converges to

m(xl, X2)

X2

23






The Gaussian kernel

Y2
k(x,x") :exp(— |x2)2(,|)
o

e This is really powerful, as it gives us a numerically tractable
way of using an infinite-dimensional feature space.

25



The Gaussian kernel

Y2
k(x,x") :exp(— |x2)2(,|)
o

e This is really powerful, as it gives us a numerically tractable
way of using an infinite-dimensional feature space.

e At this point, it helps to think of kernels simply as measures

of similarity and closeness between pairs of samples.

25



The Gaussian kernel

Y2
k(x,x") :exp(— |x2)2(,|)
o

e This is really powerful, as it gives us a numerically tractable
way of using an infinite-dimensional feature space.

e At this point, it helps to think of kernels simply as measures

of similarity and closeness between pairs of samples.

e (actually a large chunk of kernel methods were developed to
deal with spatial statistical modelling of forest density... )

25



Kernel Ridge Regression example - Gaussian kernel

e = Training
Kernel Ridge Prediction

0.15 \ = True Function

0.10

0.05

0.00 1

—0.05 4

26



Some intuition on kernels

We can predict complex functions on large dimension using,

v =K (K+ )y, and k(x,x) = exp —M
) ) 20_2 *

27



Some intuition on kernels

We can predict complex functions on large dimension using,

v =K (K+ )y, and k(x,x) = exp —M
) ) 20_2 *

But why does it work?

27



Some intuition on kernels

We can predict complex functions on large dimension using,

v =K (K+ )y, and k(x,x) = exp —M
) ) 20_2 *

But why does it work? Take one training point [xi, y1] = [6, 10],
then K = [k(x1,x1)] = [1] and y = [y1] (training data),

27



Some intuition on kernels

We can predict complex functions on large dimension using,

v =K (K+ )y, and k(x,x) = exp —M
) ) 20_2 *

But why does it work? Take one training point [xi, y1] = [6, 10],
then K = [k(x1,x1)] = [1] and y = [y1] (training data),

(" —x1)
K* = [k(x*, x1)] and y* = k(x*, x1)y1 = y1e~ 27

27



Some intuition on kernels
We can predict complex functions on large dimension using,

v =K (K+ )y, and k(x,x) = exp —M

) ) 20_2 *
But why does it work? Take one training point [xi, y1] = [6, 10],
then K = [k(x1,x1)] = [1] and y = [y1] (training data),
K* = [rk(x*,x1)] and y* =~ k(x*, x1)y1 = y1e~ 252

(x* 7)(1)2
10.0 AN
// \\‘
7.5 /) \
/ ‘\
o Training data (x1, y1) \
>0 - Predict y* \
7 \
2.5 / N\
0.0bg==z=mommom” -
0 2 4 6
*
X

27



Some intuition on kernels

y =K K+ )y, and k(x,x) =exp —M .
) ) 20_2

What about adding more training data?

28



Some intuition on kernels

y =K K+ )y, and k(x,x) =exp —M .
) ) 20_2

What about adding more training data? With three data points:
y = 1,y2,y3]7, (K+ A7ty = [a1, a2, a3] T (only training data),

28



Some intuition on kernels

y =K' (K+ /\I)*ly and  k(x,x) = exp —M .
) M 20_2

What about adding more training data? With three data points:
y = [y1,y2,y3] T, (K+ A"ty = [a1, a0, a3] " (only training data),
K* = [1(x", x1), 5(x", x2), £(x", x3)],

28



Some intuition on kernels

y =K K+ )y, and k(x,x) =exp —M .
) ) 20_2

What about adding more training data? With three data points:
y = [y1,y2,y3] T, (K+ A"ty = [a1, a0, a3] " (only training data),
K* = [k(x*, x1), k(x*, x2), k(x*, x3)], then

y* = K*[a1, a2, 23] T = a1k(x*, x1) + axk(x*, x2) + azk(x*, x3):

28



Some intuition on kernels

y =K K+ )y, and k(x,x) =exp —M .
) ) 20_2

What about adding more training data? With three data points:
y = [y1,y2,y3] T, (K+ A"ty = [a1, a0, a3] " (only training data),
K* = [k(x*, x1), k(x*, x2), k(x*, x3)], then

y* = K*[a1, a2, 23] T = a1k(x*, x1) + axk(x*, x2) + azk(x*, x3):

10 a~

e Training data / ™
\
8t|---- Predicty” / A,
\
\

/

/
/
6 /
/

28



Some intuition on kernels

y =K K+ )y, and k(x,x) =exp <—

[x — x||?
202 '

What about adding more training data? With three data points:
y = 1,y2,y3]7, (K+ A7ty = [a1, a2, a3] T (only training data),

K* = [k(x*, x1), k(x*, x2), k(x*, x3)], then

Training data
- Predict y”*

yik(x", x1)
¥aK(X", X2)

y3K(x", x3)

* = K*[a1, a2, a3] T = a1k(x*, x1) + ak(x*, x2) + azk(x*, x3):

yr =
10 Paaty
e Training data / N
8t|---- Predicty” //
/
6 s
4
2 et /
0 2 4 6
*
X

28



Some intuition on kernels

y =K K+ )y, and k(x,x) =exp —M .
) ) 20_2

What about adding more training data? With three data points:
y = [v1, 2, 3], (K+ A1)ty = [a1, a2, a3] " (only training data),
K* = [k(x*, x1), k(x*, x2), k(x*, x3)], then

*

y* = K*[a1, a2, 83]T = a1k(x*, x1) + a2k(x*, x2) + azk(x*, x3):

10 oS 10
e Training data / N Training data

gl|---- Predicty” / A, 8 - Predicty”
! \ yik(x ", x1)

6 / \ 6 *
Y, \ y2K(X ", x2)

4 // \_\ 4 y3K(x", x3)

2 el / N2

0 2 4 N 6 8 10.0
X

If add > _; yjr(x*, x;) we don't get y*. The a; # y; to compensate
for the overlapping kernel functions x(x*, x;). 28



What have we learned today?

e learned about the dual form of linear regression
e introduced the kernel trick
e Shown that you can learn and predict fairly complex functions

on large dimensions using,
y' = K (K+ Aty

where
K = r(x,x")

(all pairs of training points), and
K* = k(x*, x)

(pairs of training and prediction points)

e This is called Kernel Ridge Regression

29



