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Unsupervised Learning

Types of unsupervised learning tasks:

• Density estimation

• Clustering

• Feature Extraction / Dimensionality Reduction
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Unsupervised Learning

For now, we will focus on density estimation (because we don’t

have infinite time)

So what is it exactly?
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Density Estimation

Density estimation seeks to answer the question: how is my data

distributed?

Can you spot the pattern on this data set?
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Density Estimation

How about this one?
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Density Estimation

They are the same, we’ve just reshuffled them!
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Density Estimation

One of the simplest ways of looking at how data is distributed is

through a histogram
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Density Estimation

And what happens when we have more than one dimension? Like

in our bridge data...
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Density Estimation

We could look at 2 dimensions with a scatter plot
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Density Estimation

And we could add histograms...
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Density Estimation

We could look at all 4 dimensions at the same time
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Density Estimation

• There are many wonderful plots we can create to get insight

into our data

• Visualising things is important, but...

• It does not scale to high dimensions

• It doesn’t quantify anything

• Why might we want to quantify the density of our data?

• To detect abnormal data.

• To find groupings or clusters in our data.
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Density Estimation

There are two kinds of density estimation techniques:

• Parametric: small models but assume a simple shape for the

data distribution.

• Non-parametric: large models which can accommodate any

data distribution.

We’ll be looking at both kinds

12



Parametric Density Estimation

• In density estimation, we model the data’s density with the

function

p = p(x)

• For parametric density estimation the Gaussian distribution is

widely used (though not always the most appropriate)
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Gaussian distribution

A Gaussian distributions models the probability density of data

using two free parameters that model the mean location µ and the

scatter variance 2σ2.

In one dimension:

p(x∗) =
1

(2πσ2)1/2
exp

(
− |x

∗ − µ|2

σ2

)
,

where x∗ is the point you want to predict the density p(x∗), and

µ = E [xi ] =
1

n

n∑
i

xi ,

σ2 = E [(xi − µ)2] =
1

n − 1

n∑
i=1

(xi − µ)2.
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Gaussian distribution

In d dimensions we want to predict the density at

x∗ = [x∗1 , x
∗
1 , . . . , x

∗
d ]T using the data xi = [xi1, xi2, . . . , xid ]T .

We can achieve that with a multivariate Gaussian distribution:

p(x∗) =
1

(2π)d/2 det(S)1/2
exp

(
− 1

2
(x∗ − µ)TS−1(x∗ − µ)

)
where now the mean is the vector µ = [µ1, µ2, . . . , µd ] and the

covariance S is a d × d matrix.

µ = E [xi ] =
1

n

n∑
i=1

xi =

(x11 + x21 + . . .+ xn1)/n
...

(x1d + x2d + . . .+ xnd)/n

 ,
S = E [(xi − µ)T (xi − µ)] =

1

n − 1

n∑
i=1

(xi − µ)(xi − µ)T .
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Gaussian distribution

To calculate the matrix S let’s take a closer look at this matrix

multiplication in 2D, that is d = 2:

(xi − µ)(xi − µ)T =

[
xi1 − µ1

xid − µd

] [
xi1 − µ1 xi2 − µ2

]
=

[
(xi1 − µ1)2 (xi2 − µ2)(xi1 − µ1)

(xi2 − µ2)(xi1 − µ1) (xi2 − µ2)2

]

To calculate S, we need to sum over i :

S =
1

n − 1

n∑
i=1

(xi − µ)(xi − µ)T

=
1

n − 1

n∑
i=1

[
(xi1 − µ1)2 (xi2 − µ2)(xi1 − µ1)

(xi2 − µ2)(xi1 − µ1) (xi2 − µ2)2

]
.

If xi had d dimensions then S would be a d × d matrix.
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Gaussian distribution - example

Lets fit this to our bridge data - in 1D
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Gaussian distribution - example

Lets fit this to our bridge - in 2D
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Kernel Density Estimation

• To motivate the use of kernels for density estimation, it helps

to see some of the shortcomings of histograms1.

• A histogram can change significantly when changing the

position of the bins:

1https://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation
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Kernel Density Estimation

• Kernel methods can accurately estimate any data distribution

(non-parametric density estimation).

p(x∗) =
1

nh

n∑
i=1

κ(x∗, xi ), (1)

where κ(x∗, xi ) is exactly the same kernel function used for

kernel ridge regression!

• For example the Gaussian kernel : κ(x, x′) = exp(− |x−x
′|2

h ),

where h is now called the bandwidth/length-scale

hyper-parameter.

• the Gaussian kernel is also a popular choice, and leads to

smooth densities.

• and as before, we’ll have to tune the hyper-parameter h that

controls fit quality.
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Kernel Density Estimation - example

Lets see how kernel density does on our bridge data... in 1D
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Kernel Density Estimation - example

Lets see how kernel density does on our bridge data... in 2D
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Conclusions

we have,

• learned about density estimation

• looked at one of the most popular parametric techniques: the

Gaussian distribution

• learned about non-parametric density estimation, with kernels

• these both extend easily to multiple dimensions
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