Introduction to Machine Learning Unsupervised Learning - Density Estimation

Ramon Fuentes^{1,2}, Artur Gower³ August 9, 2019

¹Visiting Researcher, Dynamics Research Group The University of Sheffield

²Research Scientist, Callsign Ltd

Unsupervised Learning

Types of unsupervised learning tasks:

- Density estimation
- Clustering
- Feature Extraction / Dimensionality Reduction

Unsupervised Learning

For now, we will focus on **density estimation** (because we don't have infinite time)

So what is it exactly?

Density estimation seeks to answer the question: how is my data distributed?

Can you spot the pattern on this data set?

How about this one?

They are the same, we've just reshuffled them!

One of the simplest ways of looking at how data is distributed is through a histogram

And what happens when we have more than one dimension? Like in our bridge data...

We could look at 2 dimensions with a scatter plot

And we could add histograms...

- There are many wonderful plots we can create to get insight into our data
- Visualising things is important, but...
 - It does not scale to high dimensions
 - It doesn't quantify anything
- Why might we want to quantify the density of our data?
 - To detect abnormal data.
 - To find groupings or clusters in our data.

There are two kinds of density estimation techniques:

- Parametric: small models but assume a simple shape for the data distribution.
- Non-parametric: large models which can accommodate any data distribution.

We'll be looking at both kinds

Parametric Density Estimation

 In density estimation, we model the data's density with the function

$$p = p(\mathbf{x})$$

 For parametric density estimation the Gaussian distribution is widely used (though not always the most appropriate)

A Gaussian distributions models the *probability density* of data using two free parameters that model the mean location μ and the scatter variance $2\sigma^2$.

In one dimension:

$$p(x^*) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{|x^* - \mu|^2}{\sigma^2}\right),$$

where x^* is the point you want to predict the density $p(x^*)$, and

$$\mu = E[x_i] = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

A Gaussian distributions models the *probability density* of data using two free parameters that model the mean location μ and the scatter variance $2\sigma^2$.

In one dimension:

$$p(x^*) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{|x^* - \mu|^2}{\sigma^2}\right),$$

where x^* is the point you want to predict the density $p(x^*)$, and

$$\mu = E[x_i] = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$\sigma^2 = E[(x_i - \mu)^2] = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2.$$

In *d* dimensions we want to predict the density at $\mathbf{x}^* = [x_1^*, x_1^*, \dots, x_d^*]^T$ using the data $\mathbf{x}_i = [x_{i1}, x_{i2}, \dots, x_{id}]^T$.

In *d* dimensions we want to predict the density at

$$\mathbf{x}^* = [x_1^*, x_1^*, \dots, x_d^*]^T$$
 using the data $\mathbf{x}_i = [x_{i1}, x_{i2}, \dots, x_{id}]^T$.

We can achieve that with a multivariate Gaussian distribution:

$$p(\mathbf{x}^*) = \frac{1}{(2\pi)^{d/2}\det(\mathbf{S})^{1/2}}\exp\left(-\frac{1}{2}(\mathbf{x}^* - \boldsymbol{\mu})^T\mathbf{S}^{-1}(\mathbf{x}^* - \boldsymbol{\mu})\right)$$

where now the mean is the vector $\boldsymbol{\mu} = [\mu_1, \mu_2, \dots, \mu_d]$ and the covariance **S** is a $d \times d$ matrix.

In *d* dimensions we want to predict the density at $\mathbf{x}^* = [x_1^*, x_1^*, \dots, x_d^*]^T$ using the data $\mathbf{x}_i = [x_{i1}, x_{i2}, \dots, x_{id}]^T$.

We can achieve that with a multivariate Gaussian distribution:

$$p(\mathbf{x}^*) = \frac{1}{(2\pi)^{d/2}\det(\mathbf{S})^{1/2}}\exp\Big(-\frac{1}{2}(\mathbf{x}^* - \boldsymbol{\mu})^T\mathbf{S}^{-1}(\mathbf{x}^* - \boldsymbol{\mu})\Big)$$

where now the mean is the vector $\boldsymbol{\mu} = [\mu_1, \mu_2, \dots, \mu_d]$ and the covariance **S** is a $d \times d$ matrix.

$$\mu = E[\mathbf{x}_i] = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i = \begin{bmatrix} (x_{11} + x_{21} + \dots + x_{n1})/n \\ \vdots \\ (x_{1d} + x_{2d} + \dots + x_{nd})/n \end{bmatrix},$$

$$\mathbf{S} = E[(\mathbf{x}_i - \mu)^T (\mathbf{x}_i - \mu)] = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^T.$$

To calculate the matrix \mathbf{S} let's take a closer look at this matrix multiplication in 2D, that is d=2:

$$(\mathbf{x}_{i} - \boldsymbol{\mu})(\mathbf{x}_{i} - \boldsymbol{\mu})^{T} = \begin{bmatrix} x_{i1} - \mu_{1} \\ x_{id} - \mu_{d} \end{bmatrix} \begin{bmatrix} x_{i1} - \mu_{1} & x_{i2} - \mu_{2} \end{bmatrix}$$

$$= \begin{bmatrix} (x_{i1} - \mu_{1})^{2} & (x_{i2} - \mu_{2})(x_{i1} - \mu_{1}) \\ (x_{i2} - \mu_{2})(x_{i1} - \mu_{1}) & (x_{i2} - \mu_{2})^{2} \end{bmatrix}$$

To calculate S, we need to sum over i:

$$\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}) (\mathbf{x}_{i} - \boldsymbol{\mu})^{T}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} \begin{bmatrix} (x_{i1} - \mu_{1})^{2} & (x_{i2} - \mu_{2})(x_{i1} - \mu_{1}) \\ (x_{i2} - \mu_{2})(x_{i1} - \mu_{1}) & (x_{i2} - \mu_{2})^{2} \end{bmatrix}.$$

To calculate the matrix \mathbf{S} let's take a closer look at this matrix multiplication in 2D, that is d=2:

$$(\mathbf{x}_{i} - \boldsymbol{\mu})(\mathbf{x}_{i} - \boldsymbol{\mu})^{T} = \begin{bmatrix} x_{i1} - \mu_{1} \\ x_{id} - \mu_{d} \end{bmatrix} \begin{bmatrix} x_{i1} - \mu_{1} & x_{i2} - \mu_{2} \end{bmatrix}$$

$$= \begin{bmatrix} (x_{i1} - \mu_{1})^{2} & (x_{i2} - \mu_{2})(x_{i1} - \mu_{1}) \\ (x_{i2} - \mu_{2})(x_{i1} - \mu_{1}) & (x_{i2} - \mu_{2})^{2} \end{bmatrix}$$

To calculate S, we need to sum over i:

$$\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^T$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} \begin{bmatrix} (x_{i1} - \mu_1)^2 & (x_{i2} - \mu_2)(x_{i1} - \mu_1) \\ (x_{i2} - \mu_2)(x_{i1} - \mu_1) & (x_{i2} - \mu_2)^2 \end{bmatrix}.$$

If \mathbf{x}_i had d dimensions then \mathbf{S} would be a $d \times d$ matrix.

Gaussian distribution - example

Lets fit this to our bridge data - in 1D

Gaussian distribution - example

Lets fit this to our bridge - in 2D

Kernel Density Estimation

- To motivate the use of kernels for density estimation, it helps to see some of the shortcomings of histograms¹.
- A histogram can change significantly when changing the position of the bins:

 $^{^{1} \}verb|https://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation$

Kernel Density Estimation

 Kernel methods can accurately estimate any data distribution (non-parametric density estimation).

$$\rho(\mathbf{x}^*) = \frac{1}{nh} \sum_{i=1}^n \kappa(\mathbf{x}^*, \mathbf{x}_i), \tag{1}$$

where $\kappa(\mathbf{x}^*, \mathbf{x}_i)$ is exactly the same kernel function used for kernel ridge regression!

- For example the Gaussian kernel : $\kappa(\mathbf{x}, \mathbf{x}') = \exp(-\frac{|\mathbf{x} \mathbf{x}'|^2}{\hbar})$, where h is now called the bandwidth/length-scale hyper-parameter.
- the Gaussian kernel is also a popular choice, and leads to smooth densities.
- and as before, we'll have to tune the hyper-parameter h that controls fit quality.

Kernel Density Estimation - example

Lets see how kernel density does on our bridge data... in 1D

Kernel Density Estimation - example

Lets see how kernel density does on our bridge data... in 2D

Conclusions

we have,

- learned about density estimation
- looked at one of the most popular parametric techniques: the Gaussian distribution
- learned about non-parametric density estimation, with kernels
- these both extend easily to multiple dimensions