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Unsupervised Learning

Types of unsupervised learning tasks:

e Density estimation
e Clustering

e Feature Extraction / Dimensionality Reduction



Unsupervised Learning

For now, we will focus on density estimation (because we don't
have infinite time)

So what is it exactly?



Density Estimation

Density estimation seeks to answer the question: how is my data
distributed?
Can you spot the pattern on this data set?
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Density Estimation

How about this one?
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Density Estimation

They are the same, we've just reshuffled them!
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Density Estimation

One of the simplest ways of looking at how data is distributed is
through a histogram
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Density Estimation

And what happens when we have more than one dimension? Like

in our bridge data...
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Density Estimation

We could look at 2 dimensions with a scatter plot
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Density Estimation

And we could add histograms...

5.8 1

5.6 1

5.4 4

5.0 1

4.8 4

4.6 1




Density Estimation
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We could look at all 4 dimensions at the same time
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Density Estimation

e There are many wonderful plots we can create to get insight

into our data
e Visualising things is important, but...

e |t does not scale to high dimensions
e |t doesn't quantify anything

e Why might we want to quantify the density of our data?

e To detect abnormal data.
e To find groupings or clusters in our data.
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Density Estimation

There are two kinds of density estimation techniques:

e Parametric: small models but assume a simple shape for the

data distribution.

e Non-parametric: large models which can accommodate any
data distribution.

We'll be looking at both kinds
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Parametric Density Estimation

e In density estimation, we model the data’s density with the
function
p = p(x)
e For parametric density estimation the Gaussian distribution is
widely used (though not always the most appropriate)
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Gaussian distribution

A Gaussian distributions models the probability density of data
using two free parameters that model the mean location p and the
scatter variance 20°2.

In one dimension:

X"~

. 1 pl?
p(X ) = (27]_0_2)1/2 exp ( - 0_2 )7

where x* is the point you want to predict the density p(x*), and

p=Elx] = %ZX:%
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Gaussian distribution

A Gaussian distributions models the probability density of data
using two free parameters that model the mean location p and the
scatter variance 20°2.

In one dimension:

X"~

. 1 pl?
p(X ) = (27]_0_2)1/2 exp ( - 0_2 )7

where x* is the point you want to predict the density p(x*), and

p=Elx] = %ZX:%

o = El(x — nf) = 1 >0 - )
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Gaussian distribution

In d dimensions we want to predict the density at
X =[xy, X7, ... ,x:,]T using the data x; = [xi1, Xj2, . .., Xig] | .
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Gaussian distribution

In d dimensions we want to predict the density at
X =[xy, X7, ... ,X;,]T using the data x; = [xi1, Xj2, . .., Xig] | .

We can achieve that with a multivariate Gaussian distribution:

*\ 1 1 * Te—-1/_%*
P = a7 qers) 72 exp (— 5 (" = 1) TS THx" — )
where now the mean is the vector pu = 1, 2, . . ., 1ig] and the

covariance S is a d X d matrix.
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Gaussian distribution

In d dimensions we want to predict the density at
X =[xy, X7, ... ,X;,]T using the data x; = [xi1, Xj2, . .., Xig] | .

We can achieve that with a multivariate Gaussian distribution:

*\ 1 1 * Te—-1/_%*
P = a7 qers) 72 exp (— 5 (" = 1) TS THx" — )
where now the mean is the vector pu = 1, 2, . . ., 1ig] and the

covariance S is a d X d matrix.
1 (x11 +x21 + ...+ xn1)/n
MZE[Xi]anlxiZ : ,
= (X1d+X2d+...+Xnd)/n

S = El(x — ) 0 — )] = = > i — m)xi — 1)
i=1

n—14
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Gaussian distribution

To calculate the matrix S let’s take a closer look at this matrix
multiplication in 2D, that is d = 2:

(xi — p)(x; — H)T = [Xfl : ”1] {Xu —H1 X2 — Mz}
Xid Hd
_ (xi1 — p1)? (xi2 — p2)(xi1 — 1)
(xi2 — p2)(xi1 — 1) (xi2 — p12)?

To calculate S, we need to sum over i:

S= 1> - )~ )T
i—1
RS (xi1 — p1)? (xi2 — p2)(xi1 — pi1)
-1 ; !(XQ — p2)(xi1 — p1) (xi2 = p12)? ] .
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Gaussian distribution

To calculate the matrix S let’s take a closer look at this matrix
multiplication in 2D, that is d = 2:

Xi1 — M1

(xi — p)(x;i — H)T = [ I ] [Xil — M1 X2 — /~L2}
Xid — Hd

_ (xi1 — p1)? (xi2 — p2)(xi1 — p1)

(xi2 — p2)(xi1 — p1) (xi2 — p2)?

To calculate S, we need to sum over i:

1 n
S = p— Z(x,- —p)(xi —p)T

i=1

- 1 : zn: l( (xi1 — p1)? (Xi2 — p2)(xi1 — Ml)] ‘

— | (xi2 — p2)(xin — pa) (xi2 — p2)?
If x; had d dimensions then S would be a d x d matrix.
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Gaussian distribution - example

Lets fit this to our bridge data - in 1D
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Gaussian distribution - example

Lets fit this to our bridge - in 2D
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Kernel Density Estimation

e To motivate the use of kernels for density estimation, it helps
to see some of the shortcomings of histograms!.
e A histogram can change significantly when changing the

position of the bins:
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 https://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation
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https://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation

Kernel Density Estimation

e Kernel methods can accurately estimate any data distribution
(non-parametric density estimation).

p(x) = Z K(x*, ;) (1)

where k(x*,x;) is exactly the same kernel function used for
kernel ridge regression!

e For example the Gaussian kernel : x(x,x’) = exp(—#),
where h is now called the bandwidth/length-scale
hyper-parameter.

e the Gaussian kernel is also a popular choice, and leads to
smooth densities.

e and as before, we'll have to tune the hyper-parameter h that

controls fit quality.
20



Kernel Density Estimation - example

Lets see how kernel density does on our bridge data... in 1D
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Kernel Density Estimation - example

Lets see how kernel density does on our bridge data... in 2D
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Conclusions

we have,

e learned about density estimation

e looked at one of the most popular parametric techniques: the
Gaussian distribution

e learned about non-parametric density estimation, with kernels

e these both extend easily to multiple dimensions
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