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A little bit about me...
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The tools of machine learning
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The tools of machine learning
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Motivating problem

Given a set of measured natural frequencies from a bridge, can we

detect damage?
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Motivating problem

Can we diagnose problems on a wind turbine,

given measured wind and power?
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Supervised learning

Supervised learning deals with

the problem of modelling the

relationship between a set of

inputs, x and outputs y

6



A first look at supervised learning: linear regression

Given some measured data,

there are generally two problems of interest:
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Linear Regression

Lets start with a simple toy example: a noisy y = 5x + 1

Can we learn the relationship

between x and y from the data

?

We need to things:

1. A model

2. A loss function, that

quantifies our error or

predictive performance
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Linear Regression

We need a model for the

underlying function:

y = f (x)

Linear regression models f (x)

as:

y = x0w0 + x1w1 + x2w2 + ...

y =
∑
j

xjwj
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Linear Regression

So, we have a model,

parametrised by w, we now

need to define a loss function so

we can pick our weights

appropriately

A bunch of models drawn at

random, which fits the data

best?
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Squared error loss

One appropriate loss function is

the mean of the squared

prediction error:

J(w) =
1

2

n∑
i=1

(y (i) − f (x (i)))2

But how should we find the

value of w that minimises

J(w)?

J(w)
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Gradient Descent

• There are many ways to optimise w, but one efficient way of

doing so is via gradient descent.

• The idea is that we’ll start with an initial choice for w and

improve it iteratively in a direction that decreases J(w) - our

cost function

• We take a step in the direction of the gradient ∂J
∂w
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Gradient Descent

This leads us to the gradient descent algorithm:

wj ← wj − α
∂

∂wj
J(w)

And recall our loss function was:

J(w) =
1

2

n∑
i=1

(y (i) − f (x(i)))2

and remember,

f (x(i)) =
d∑
j

wjx
(i)
j
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Gradient Descent

Lets derive ∂
∂wj

J(w) for the case where we have a single training

example x
(i)
j y (i),

∂

∂wj
J(w) =

∂

∂wj

1

2
(y (i) − f (x(i)))2

= 2
1

2
(y (i) − f (x(i)))

∂

∂wj
(y (i) − f (x(i)))

= (y (i) − f (x(i)))
∂

∂wj

( d∑
k=0

x
(i)
k wk − y (i)

)
= (y (i) − f (x(i)))x

(i)
j
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Gradient Descent, learning rule

We now have an update rule, that we can apply whenever we

encounter a new observation,

wj = wj + α
(
y (i) − f (x(i))

)
x

(i)
j

here, α is a learning rate
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Batch Gradient Descent

When we have all training observations x (1), ..., x (n) and

y (i), ..., y (n), we can assemble this into an algorithm

while not converged do

for every j , do

wj ← wj + α
∑n

i=1

(
y (i) −

∑d
j x

(i)
j wj

)
xj

end for

end while

this is called batch gradient descent
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Back to our problem...

Applying 200 iterations of

batch gradient descent to

our toy problem, this is

how our quadratic loss

looks like

True function: y = 5x + 1

Estimated parameters:

w0 = 1.05,w1 = 3.75

close enough...

J(w), α = 0.5
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Back to our problem...

What happens if we choose a lower learning rate (α = 0.05)?
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Back to our problem...

What happens if we choose a higher learning rate(α = 1.5)?
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Gradient Descent

Some notes on gradient descent:

• The learning rate has to be chosen wisely.

• It is common to have a cooling rate - take large steps initially,

and slow down as learning progresses. A bit of a heuristic

• It can get stuck in local optima. Not in this case though, as

we have a well defined convex quadratic loss function.

• For the basic linear regression problem, can we do better?

• yes!
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Analytical solution

• There is in fact a closed form analytical solution that

optimises J(w).

• But first, lets re-write our problem in matrix notation

• Our output is represented by a (column) vector: y = [y1, ...yn]

• And our inputs are assembled into a matrix, with each

variable represented by a column X = [x1, ..., xm],

• where each column, xj = [x
(1)
j , ..., x

(n)
j ]
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Analytical solution

Our linear regression problem is now:

y = Xw

Our loss is:

J(w) =
1

2

n∑
i=1

(y (i) −
d∑
j

x
(i)
j wj)

2

=
1

2
(y − Xw)T (y − Xw)
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Analytical solution

The gradient of the loss is

∇wJ(w) = ∇w
1

2
(y − Xw)T (y − Xw)

which (applying a few matrix identities...) leads to,

∇wJ(w) = XTXw − XTy

Setting ∇wJ(w) to zero, leads to the normal equations,

XTXw = XTy

and solving for w, gives us

w = (XTX)−1XTy
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Back to our problem again

Using the normal equation,

w = (XTX)−1XTy

w0 = 1.05,w1 = 3.75

Similar solution as gradient descent!

but rather easier ?

24



Back to our problem again

Using the normal equation,

w = (XTX)−1XTy

w0 = 1.05,w1 = 3.75

Similar solution as gradient descent!

but rather easier ?

24



Back to our problem again

Using the normal equation,

w = (XTX)−1XTy

w0 = 1.05,w1 = 3.75

Similar solution as gradient descent!

but rather easier ?

24



Back to our problem again

Using the normal equation,

w = (XTX)−1XTy

w0 = 1.05,w1 = 3.75

Similar solution as gradient descent!

but rather easier ?

24



Recap

We’ve looked at two ways of optimising the parameters/weights in

a linear regression setting:

• through gradient descent, leading to the batch gradient

descent algorithm

• analytically, through the matrix normal equations

• both of these useful on their own, and key ingredients when

solving more complex problems, as we’ll see...
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Conclusions

What have we learned today?

• Basics of supervised vs. unsupervised learning

• Linear models for regression

• The least means squares algorithm

• Analytical solution to the unconstrained linear regression

problem
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So... what next?

Tomorrow, we’ll learn how to deal with more complex nonlinear

problems, using the tools we’ve worked through today ;)
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