
Introduction to Machine Learning

Ramon Fuentes1,2

August 5, 2019

1Visiting Researcher, Dynamics Research Group

The University of Sheffield

2Research Scientist, Callsign Ltd

A little bit about me...

1

The tools of machine learning

2

The tools of machine learning

3

Motivating problem

Given a set of measured natural frequencies from a bridge, can we

detect damage?

4

Motivating problem

Can we diagnose problems on a wind turbine,

given measured wind and power?

5

Supervised learning

Supervised learning deals with

the problem of modelling the

relationship between a set of

inputs, x and outputs y

6

A first look at supervised learning: linear regression

Given some measured data,

there are generally two problems of interest:

7

Linear Regression

Lets start with a simple toy example: a noisy y = 5x + 1

Can we learn the relationship

between x and y from the data

?

We need to things:

1. A model

2. A loss function, that

quantifies our error or

predictive performance

8

Linear Regression

We need a model for the

underlying function:

y = f (x)

Linear regression models f (x)

as:

y = x0w0 + x1w1 + x2w2 + ...

y =
∑
j

xjwj

9

Linear Regression

So, we have a model,

parametrised by w, we now

need to define a loss function so

we can pick our weights

appropriately

A bunch of models drawn at

random, which fits the data

best?

10

Squared error loss

One appropriate loss function is

the mean of the squared

prediction error:

J(w) =
1

2

n∑
i=1

(y (i) − f (x (i)))2

But how should we find the

value of w that minimises

J(w)?

J(w)

11

Gradient Descent

• There are many ways to optimise w, but one efficient way of

doing so is via gradient descent.

• The idea is that we’ll start with an initial choice for w and

improve it iteratively in a direction that decreases J(w) - our

cost function

• We take a step in the direction of the gradient ∂J
∂w

12

Gradient Descent

• There are many ways to optimise w, but one efficient way of

doing so is via gradient descent.

• The idea is that we’ll start with an initial choice for w and

improve it iteratively in a direction that decreases J(w) - our

cost function

• We take a step in the direction of the gradient ∂J
∂w

12

Gradient Descent

• There are many ways to optimise w, but one efficient way of

doing so is via gradient descent.

• The idea is that we’ll start with an initial choice for w and

improve it iteratively in a direction that decreases J(w) - our

cost function

• We take a step in the direction of the gradient ∂J
∂w

12

Gradient Descent

This leads us to the gradient descent algorithm:

wj ← wj − α
∂

∂wj
J(w)

And recall our loss function was:

J(w) =
1

2

n∑
i=1

(y (i) − f (x(i)))2

and remember,

f (x(i)) =
d∑
j

wjx
(i)
j

13

Gradient Descent

This leads us to the gradient descent algorithm:

wj ← wj − α
∂

∂wj
J(w)

And recall our loss function was:

J(w) =
1

2

n∑
i=1

(y (i) − f (x(i)))2

and remember,

f (x(i)) =
d∑
j

wjx
(i)
j

13

Gradient Descent

This leads us to the gradient descent algorithm:

wj ← wj − α
∂

∂wj
J(w)

And recall our loss function was:

J(w) =
1

2

n∑
i=1

(y (i) − f (x(i)))2

and remember,

f (x(i)) =
d∑
j

wjx
(i)
j

13

Gradient Descent

Lets derive ∂
∂wj

J(w) for the case where we have a single training

example x
(i)
j y (i),

∂

∂wj
J(w) =

∂

∂wj

1

2
(y (i) − f (x(i)))2

= 2
1

2
(y (i) − f (x(i)))

∂

∂wj
(y (i) − f (x(i)))

= (y (i) − f (x(i)))
∂

∂wj

(d∑
k=0

x
(i)
k wk − y (i)

)
= (y (i) − f (x(i)))x

(i)
j

14

Gradient Descent, learning rule

We now have an update rule, that we can apply whenever we

encounter a new observation,

wj = wj + α
(
y (i) − f (x(i))

)
x

(i)
j

here, α is a learning rate

15

Batch Gradient Descent

When we have all training observations x (1), ..., x (n) and

y (i), ..., y (n), we can assemble this into an algorithm

while not converged do

for every j , do

wj ← wj + α
∑n

i=1

(
y (i) −

∑d
j x

(i)
j wj

)
xj

end for

end while

this is called batch gradient descent

16

Back to our problem...

Applying 200 iterations of

batch gradient descent to

our toy problem, this is

how our quadratic loss

looks like

True function: y = 5x + 1

Estimated parameters:

w0 = 1.05,w1 = 3.75

close enough...

J(w), α = 0.5

17

Back to our problem...

What happens if we choose a lower learning rate (α = 0.05)?

18

Back to our problem...

What happens if we choose a higher learning rate(α = 1.5)?

19

Gradient Descent

Some notes on gradient descent:

• The learning rate has to be chosen wisely.

• It is common to have a cooling rate - take large steps initially,

and slow down as learning progresses. A bit of a heuristic

• It can get stuck in local optima. Not in this case though, as

we have a well defined convex quadratic loss function.

• For the basic linear regression problem, can we do better?

• yes!

20

Gradient Descent

Some notes on gradient descent:

• The learning rate has to be chosen wisely.

• It is common to have a cooling rate - take large steps initially,

and slow down as learning progresses. A bit of a heuristic

• It can get stuck in local optima. Not in this case though, as

we have a well defined convex quadratic loss function.

• For the basic linear regression problem, can we do better?

• yes!

20

Gradient Descent

Some notes on gradient descent:

• The learning rate has to be chosen wisely.

• It is common to have a cooling rate - take large steps initially,

and slow down as learning progresses. A bit of a heuristic

• It can get stuck in local optima. Not in this case though, as

we have a well defined convex quadratic loss function.

• For the basic linear regression problem, can we do better?

• yes!

20

Gradient Descent

Some notes on gradient descent:

• The learning rate has to be chosen wisely.

• It is common to have a cooling rate - take large steps initially,

and slow down as learning progresses. A bit of a heuristic

• It can get stuck in local optima. Not in this case though, as

we have a well defined convex quadratic loss function.

• For the basic linear regression problem, can we do better?

• yes!

20

Gradient Descent

Some notes on gradient descent:

• The learning rate has to be chosen wisely.

• It is common to have a cooling rate - take large steps initially,

and slow down as learning progresses. A bit of a heuristic

• It can get stuck in local optima. Not in this case though, as

we have a well defined convex quadratic loss function.

• For the basic linear regression problem, can we do better?

• yes!

20

Analytical solution

• There is in fact a closed form analytical solution that

optimises J(w).

• But first, lets re-write our problem in matrix notation

• Our output is represented by a (column) vector: y = [y1, ...yn]

• And our inputs are assembled into a matrix, with each

variable represented by a column X = [x1, ..., xm],

• where each column, xj = [x
(1)
j , ..., x

(n)
j]

21

Analytical solution

• There is in fact a closed form analytical solution that

optimises J(w).

• But first, lets re-write our problem in matrix notation

• Our output is represented by a (column) vector: y = [y1, ...yn]

• And our inputs are assembled into a matrix, with each

variable represented by a column X = [x1, ..., xm],

• where each column, xj = [x
(1)
j , ..., x

(n)
j]

21

Analytical solution

• There is in fact a closed form analytical solution that

optimises J(w).

• But first, lets re-write our problem in matrix notation

• Our output is represented by a (column) vector: y = [y1, ...yn]

• And our inputs are assembled into a matrix, with each

variable represented by a column X = [x1, ..., xm],

• where each column, xj = [x
(1)
j , ..., x

(n)
j]

21

Analytical solution

• There is in fact a closed form analytical solution that

optimises J(w).

• But first, lets re-write our problem in matrix notation

• Our output is represented by a (column) vector: y = [y1, ...yn]

• And our inputs are assembled into a matrix, with each

variable represented by a column X = [x1, ..., xm],

• where each column, xj = [x
(1)
j , ..., x

(n)
j]

21

Analytical solution

• There is in fact a closed form analytical solution that

optimises J(w).

• But first, lets re-write our problem in matrix notation

• Our output is represented by a (column) vector: y = [y1, ...yn]

• And our inputs are assembled into a matrix, with each

variable represented by a column X = [x1, ..., xm],

• where each column, xj = [x
(1)
j , ..., x

(n)
j]

21

Analytical solution

Our linear regression problem is now:

y = Xw

Our loss is:

J(w) =
1

2

n∑
i=1

(y (i) −
d∑
j

x
(i)
j wj)

2

=
1

2
(y − Xw)T (y − Xw)

22

Analytical solution

Our linear regression problem is now:

y = Xw

Our loss is:

J(w) =
1

2

n∑
i=1

(y (i) −
d∑
j

x
(i)
j wj)

2

=
1

2
(y − Xw)T (y − Xw)

22

Analytical solution

The gradient of the loss is

∇wJ(w) = ∇w
1

2
(y − Xw)T (y − Xw)

which (applying a few matrix identities...) leads to,

∇wJ(w) = XTXw − XTy

Setting ∇wJ(w) to zero, leads to the normal equations,

XTXw = XTy

and solving for w, gives us

w = (XTX)−1XTy

23

Analytical solution

The gradient of the loss is

∇wJ(w) = ∇w
1

2
(y − Xw)T (y − Xw)

which (applying a few matrix identities...) leads to,

∇wJ(w) = XTXw − XTy

Setting ∇wJ(w) to zero, leads to the normal equations,

XTXw = XTy

and solving for w, gives us

w = (XTX)−1XTy

23

Analytical solution

The gradient of the loss is

∇wJ(w) = ∇w
1

2
(y − Xw)T (y − Xw)

which (applying a few matrix identities...) leads to,

∇wJ(w) = XTXw − XTy

Setting ∇wJ(w) to zero, leads to the normal equations,

XTXw = XTy

and solving for w, gives us

w = (XTX)−1XTy

23

Analytical solution

The gradient of the loss is

∇wJ(w) = ∇w
1

2
(y − Xw)T (y − Xw)

which (applying a few matrix identities...) leads to,

∇wJ(w) = XTXw − XTy

Setting ∇wJ(w) to zero, leads to the normal equations,

XTXw = XTy

and solving for w, gives us

w = (XTX)−1XTy

23

Back to our problem again

Using the normal equation,

w = (XTX)−1XTy

w0 = 1.05,w1 = 3.75

Similar solution as gradient descent!

but rather easier ?

24

Back to our problem again

Using the normal equation,

w = (XTX)−1XTy

w0 = 1.05,w1 = 3.75

Similar solution as gradient descent!

but rather easier ?

24

Back to our problem again

Using the normal equation,

w = (XTX)−1XTy

w0 = 1.05,w1 = 3.75

Similar solution as gradient descent!

but rather easier ?

24

Back to our problem again

Using the normal equation,

w = (XTX)−1XTy

w0 = 1.05,w1 = 3.75

Similar solution as gradient descent!

but rather easier ?

24

Recap

We’ve looked at two ways of optimising the parameters/weights in

a linear regression setting:

• through gradient descent, leading to the batch gradient

descent algorithm

• analytically, through the matrix normal equations

• both of these useful on their own, and key ingredients when

solving more complex problems, as we’ll see...

25

Recap

We’ve looked at two ways of optimising the parameters/weights in

a linear regression setting:

• through gradient descent, leading to the batch gradient

descent algorithm

• analytically, through the matrix normal equations

• both of these useful on their own, and key ingredients when

solving more complex problems, as we’ll see...

25

Recap

We’ve looked at two ways of optimising the parameters/weights in

a linear regression setting:

• through gradient descent, leading to the batch gradient

descent algorithm

• analytically, through the matrix normal equations

• both of these useful on their own, and key ingredients when

solving more complex problems, as we’ll see...

25

Conclusions

What have we learned today?

• Basics of supervised vs. unsupervised learning

• Linear models for regression

• The least means squares algorithm

• Analytical solution to the unconstrained linear regression

problem

26

So... what next?

Tomorrow, we’ll learn how to deal with more complex nonlinear

problems, using the tools we’ve worked through today ;)

27

