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The tools of machine learning
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The tools of machine learning



Motivating problem

Given a set of measured natural frequencies from a bridge, can we
detect damage?
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Motivating problem

Can we diagnose problems on a wind turbine,
given measured wind and power?
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Supervised learning

Training
set

Supervised learning deals with
the problem of modelling the

Learning
algorithm

relationship between a set of
inputs, x and outputs y
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A first look at supervised learning: linear regression

Given some measured data,
there are generally two problems of interest:

Making predictions
| j(x(t) = Pendulum displacement)

x(t)?

Identifying a system

x(t)




Linear Regression

Lets start with a simple toy example: a noisy y = 5x +1

Can we learn the relationship

between x and y from the data ' .
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Linear Regression

We need a model for the
underlying function:
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Linear Regression

A bunch of models drawn at
random, which fits the data
best?

So, we have a model,
parametrised by w, we now
need to define a loss function so
we can pick our weights 5
appropriately o
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Squared error loss

One appropriate loss function is
the mean of the squared J(w)
prediction error:
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value of w that minimises
J(w)?
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Gradient Descent

e There are many ways to optimise w, but one efficient way of
doing so is via gradient descent.
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Gradient Descent

e There are many ways to optimise w, but one efficient way of
doing so is via gradient descent.

e The idea is that we'll start with an initial choice for w and
improve it iteratively in a direction that decreases J(w) - our
cost function
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Gradient Descent

e There are many ways to optimise w, but one efficient way of
doing so is via gradient descent.

e The idea is that we'll start with an initial choice for w and
improve it iteratively in a direction that decreases J(w) - our

cost function

e We take a step in the direction of the gradient %
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Gradient Descent

This leads us to the gradient descent algorithm:
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Gradient Descent

This leads us to the gradient descent algorithm:

0

wj <— wj — a—J(w)
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And recall our loss function was:
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Gradient Descent

This leads us to the gradient descent algorithm:

0
8TVJ-J(W)

Wi < wj — «

And recall our loss function was:

n
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i=1

and remember,
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Gradient Descent

Lets derive dij( ) for the case where we have a single training

example x() y(),
0 o1,
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Gradient Descent, learning rule

We now have an update rule, that we can apply whenever we
encounter a new observation,

wj = wj + a(yt) — F(x)) <)

here, « is a learning rate
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Batch Gradient Descent

When we have all training observations x| x(" and
vy y(" we can assemble this into an algorithm
while not converged do
for every j, do
wj = wy+a S (v = 557 xw) g
end for
end while

this is called batch gradient descent
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Back to our problem...

Applying 200 iterations of
batch gradient descent to )

J(w),a =05

our toy problem, this is
how our quadratic loss
looks like e

-2.5

True function: y =5x+1 =0

=75

Estimated parameters:
Wwo = 1.05, w1 = 3.75
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close enough...
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Back to our problem...

What happens if we choose a lower learning rate (o = 0.05)?
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Back to our problem...

What happens if we choose a higher learning rate(a = 1.5)7
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Gradient Descent

Some notes on gradient descent:

e The learning rate has to be chosen wisely.
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Gradient Descent

Some notes on gradient descent:

e The learning rate has to be chosen wisely.

e It is common to have a cooling rate - take large steps initially,
and slow down as learning progresses. A bit of a heuristic

e It can get stuck in local optima. Not in this case though, as
we have a well defined convex quadratic loss function.

e For the basic linear regression problem, can we do better?

e yes!
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Analytical solution

e There is in fact a closed form analytical solution that
optimises J(w).
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Analytical solution

e There is in fact a closed form analytical solution that
optimises J(w).

e But first, lets re-write our problem in matrix notation

e Our output is represented by a (column) vector: y = [y1,...yn]

e And our inputs are assembled into a matrix, with each
variable represented by a column X = [x1, ..., Xpn],

) (”)]

1
e where each column, x; = [xj( sy X;
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Analytical solution

Our linear regression problem is now:

y = Xw
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Analytical solution

Our linear regression problem is now:
y = Xw
Our loss is:
1 n . d )
Jw) = 530 = 3wy
i J

i=1

= 20 Xw)T(y — Xw)
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Analytical solution

The gradient of the loss is
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Analytical solution

The gradient of the loss is
1
V(W) = Vi (y = Xw) " (y — Xw)
which (applying a few matrix identities...) leads to,

VwJ(w) = XTXw — XTy
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Analytical solution

The gradient of the loss is
V(W) = Vaus(y — Xw) T (y — Xw)
which (applying a few matrix identities...) leads to,
VwJ(w) = XTXw — XTy
Setting VywJ(w) to zero, leads to the normal equations,

XTXw =XTy
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Analytical solution

The gradient of the loss is
V(W) = Vaus(y — Xw) T (y — Xw)
which (applying a few matrix identities...) leads to,
VwJ(w) = XTXw — XTy
Setting VywJ(w) to zero, leads to the normal equations,
XTXw =XTy
and solving for w, gives us
w=(XTX)"1XTy
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Back to our problem again

Using the normal equation,

w=(XTX)"1XTy

24



Back to our problem again

Using the normal equation,
w=(XTX)"1XTy

wo = 1.05, wy = 3.75
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Back to our problem again

Using the normal equation,
w=(XTX)"1XTy

wo = 1.05, wq = 3.75

Similar solution as gradient descent!
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Back to our problem again

Using the normal equation,
w=(XTX)"1XTy

wo = 1.05,w; = 3.75
Similar solution as gradient descent!

but rather easier ?
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We've looked at two ways of optimising the parameters/weights in
a linear regression setting:

e through gradient descent, leading to the batch gradient
descent algorithm
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We've looked at two ways of optimising the parameters/weights in
a linear regression setting:

e through gradient descent, leading to the batch gradient
descent algorithm
e analytically, through the matrix normal equations

e both of these useful on their own, and key ingredients when
solving more complex problems, as we'll see...
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Conclusions

What have we learned today?

e Basics of supervised vs. unsupervised learning
e Linear models for regression
e The least means squares algorithm

e Analytical solution to the unconstrained linear regression

problem
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So... what next?

Tomorrow, we'll learn how to deal with more complex nonlinear
problems, using the tools we've worked through today ;)
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